1 Review of AboveNoisyThreshold

Last time, we covered the AboveNoisyThreshold (ANT) algorithm, which took in a database x, a stream of sensitivity 1 queries, a threshold T, and privacy parameter ϵ. It would report back whether the noisy answer to each query was above or below a noisy version of the threshold, and it halted the first time it found an above-threshold query.

Algorithm 1 AboveNoisyThreshold($x, \{f_i\}, T, \epsilon$)

1: AboveNoisyThreshold($x, \{f\}, T, \epsilon$):
 Input: Database x, sensitivity 1 queries $\{f\}$, threshold T, privacy parameter ϵ
 Output: $\{\perp, \top\}$
2: Let $\hat{T} = T + \text{Lap}(2/\epsilon)$
3: for each query f_i do
4: Let $v_i = \text{Lap}(4/\epsilon)$
5: if $f_i(x) + v_i \geq \hat{T}$ then
6: Output $a_i = \top$
7: else
8: Output $a_i = \perp$
9: end if
10: end for

We previously showed that ANT is $(\epsilon, 0)$-differentially private and (α, β)-accurate, meaning that with probability at least $1 - \beta$, all $\{\perp, \top\}$ outputs were correct up to an additive α.

Today, we'll extend this to the Sparse Vector Mechanism, which can handle multiple above-threshold queries without halting, and it can produce numerical answers to those queries.

2 SparseVector Mechanism

The SparseVector mechanism was developed in [DNR+09] and refined in [HR10]. It takes as input a database x, an adaptively chosen stream of sensitivity 1 queries $\{f_i\}$, a threshold T, a total number of numeric answers c, and privacy parameters (ϵ, δ). It outputs a stream of answers $\{a_i\} \in (\mathbb{R} \cup \{\perp\})^c$.
Algorithm 2 SparseVector$(x, \{ f_i \}, T, c, \epsilon, \delta)$

1: **SparseVector**$(x, \{ f_i \}, T, c, \epsilon, \delta)$:
2: Let $\epsilon_1 = \frac{8}{9} \epsilon$ and let $\epsilon_2 = \frac{2}{9} \epsilon$
3: if $\delta = 0$ then
4: Let $\sigma(\epsilon) = \frac{2c}{\epsilon}$
5: else
6: Let $\sigma(\epsilon) = \frac{32c \ln(2/\delta)}{\epsilon}$
7: end if
8: Let $\hat{T}_0 = T + \text{Lap}(\sigma(\epsilon_1))$
9: Let $\text{count} = 0$
10: for each query f_i do
11: Let $v_i = \text{Lap}(2\sigma(\epsilon_1))$
12: if $f_i(x) + v_i \geq \hat{T}_{\text{count}}$ then
13: Output $a_i = f_i(x) + \text{Lap}(\sigma(\epsilon_2))$
14: Update $\text{count} = \text{count} + 1$ and $\hat{T}_{\text{count}} = T + \text{Lap}(\sigma(\epsilon_1))$
15: else
16: Output $a_i = \bot$
17: end if
18: if $\text{count} \geq c$ then
19: Halt
20: end if
21: end for

Now let’s look at what’s going on with this mechanism. The middle part looks a whole lot like AboveNoisyThreshold (ANT). SparseVector (SV) works by repeated calls to ANT as a subroutine up to c times, until our counter reaches the pre-set limit c. Instead of halting after finding an above-threshold query, SV calls the Laplace Mechanism as a subroutine to output a noisy answer to that query.

Notice that we re-draw fresh noise for every call to the Laplace Mechanism and ANT, so SV is really just an adaptive composition of these two mechanisms. We allocate our overall privacy budget ϵ between these two mechanisms, where ϵ_1 is our ANT privacy budget and ϵ_2 is our Laplace Mechanism privacy budget.

Depending on whether our overall privacy goal is $(\epsilon, 0)$-DP or (ϵ, δ)-DP, we’ll have to set parameters within these subroutines differently. If we want $(\epsilon, 0)$-DP, we’ll end up using Basic Composition\(^1\) so we’ll set our privacy parameters so they sum to ϵ. If we want (ϵ, δ)-DP, then we can use Advanced Composition, and we’ll set our parameters according to the Corollary that we saw last time.

Theorem 1. \([\text{DNR}^+ 09]\) SparseVector is (ϵ, δ)-DP.

\(^1\)Note that we only proved Basic Composition for non-adaptive mechanisms, but the result also holds for adaptive mechanisms. The Laplace Mechanism is used adaptively based on the results of the ANT mechanism.
Proof. Case $\delta = 0$:
We first consider the case where $\delta = 0$. SV consists of c runs of ANT, where each run is $(\frac{8}{9c}\epsilon, 0)$-DP and c runs of the Laplace Mechanism, where each run is $(\frac{1}{9c}\epsilon, 0)$-DP.

Recall that ANT added Lap($2/\epsilon$) noise to the threshold and Lap($4/\epsilon$) noise to the query for overall ϵ-DP. The subroutine in SV adds

$$\text{Lap}(\sigma(\epsilon_1)) = \text{Lap} \left(\frac{2c}{\epsilon_1} \right) = \text{Lap} \left(\frac{2c}{9\epsilon} \right) = \text{Lap} \left(\frac{2}{9c\epsilon} \right)$$

(1)

noise to the threshold and

$$\text{Lap}(2\sigma(\epsilon_1)) = \text{Lap} \left(\frac{4}{9c\epsilon} \right)$$

(2)

noise to the query. Therefore, each call to ANT is $(\epsilon', 0)$-DP for $\epsilon' = \frac{8}{9c}\epsilon$.

Recall that the Laplace Mechanism adds Lap($\delta f/\epsilon$) = Lap($1/\epsilon$) noise for our sensitivity 1 queries. The subroutine in SV adds

$$\text{Lap}(\sigma(\epsilon_2)) = \text{Lap} \left(\frac{2c}{\epsilon_2} \right) = \text{Lap} \left(\frac{2c}{9\epsilon} \right) = \text{Lap} \left(\frac{1}{9c\epsilon} \right)$$

(3)

noise. Therefore, each call to the Laplace Mechanism is $(\epsilon', 0)$-DP for $\epsilon' = \frac{1}{9c}\epsilon$.

Basic Composition gives that the overall privacy guarantee is:

$$c \left(\frac{8}{9c\epsilon} \right) + c \left(\frac{1}{9c\epsilon} \right) = \frac{8}{9} \epsilon + \frac{1}{9} \epsilon = \epsilon$$

(4)

so SV is $(\epsilon, 0)$-DP.

Case $\delta > 0$:
Now we address the case where $\delta > 0$. Each run of ANT is $(\frac{8}{9\sqrt{8c\ln(2/\delta)}}\epsilon, 0)$-DP. Our subroutine adds

$$\text{Lap}(\sigma(\epsilon_1)) = \text{Lap} \left(\frac{\sqrt{32c\ln(2/\delta)}}{\epsilon_1} \right) = \text{Lap} \left(\frac{\sqrt{32c\ln(2/\delta)}}{9\epsilon} \right) = \text{Lap} \left(\frac{2}{9\sqrt{8c\ln(2/\delta)}}\epsilon \right)$$

(5)

noise to the threshold and

$$\text{Lap}(2\sigma(\epsilon_1)) = \text{Lap} \left(\frac{4}{9\sqrt{8c\ln(2/\delta)}}\epsilon \right)$$

(6)

noise to the answer. Therefore, each call to ANT is $(\epsilon', 0)$-DP for $\epsilon' = \frac{8}{9\sqrt{8c\ln(2/\delta)}}\epsilon$.

Recall the corollary of advanced composition from last time.

Corollary 2 (Advanced Composition). If $M : N^{[x]} \rightarrow R^k$ is a K-fold adaptive composition of $(\epsilon'/\sqrt{8k\ln(1/\delta')}, 0)$-DP mechanisms, then M is (ϵ', δ')-DP.
Applying this result with $k = c$, $\epsilon' = \frac{8}{9}\epsilon$, $\delta' = \frac{\delta}{2}$, we see that these runs of ANT together are $(\frac{8}{9}\epsilon, \frac{\delta}{2})$-DP.

Each run of the Laplace Mechanism is $(\frac{1}{9\sqrt{8c\ln(2/\delta)}}\epsilon, 0)$-DP, and instantiating the corollary with $\epsilon' = \frac{1}{9}\epsilon$ and $\delta' = \frac{\delta}{2}$ gives that these c runs of the Laplace Mechanism together are $(\frac{1}{9}\epsilon, \frac{\delta}{2})$-DP. Basic Composition of these two subroutines gives that SV is $(\frac{8}{9}\epsilon + \frac{1}{9}\epsilon, \frac{\delta}{2} + \frac{\delta}{2})$-DP i.e. (ϵ, δ)-DP. □

References
