Clinical Question: Do passive hydraulic ankles (PHA) improve walking mechanics and reduce distal tibial stress across different slopes in individuals with transtibial amputation (TTA) compared to non-hydraulic ankles?

Background: Passive hydraulic ankles may improve walking for people with an amputation by enabling a smoother transition from initial contact through midstance. This transition may be measured as the movement of the center of pressure. During walking with passive prosthetic feet, the center of pressure stops moving anteriorly and briefly moves posteriorly during loading response/midstance, different from what is seen in able-bodied individuals. On decline surfaces in particular, transmission of these center of pressure deviations through the lower limb may contribute to the increased stresses at the distal residual limb relative to level ground walking, increasing risk of skin breakdown, and deep tissue injury. Increased energy dissipation via passive hydraulic ankle systems mounted in series to passive energy storing and returning (ESR) feet may address these concerns. Outcome measures which could characterize improvement in walking mechanics and distal tibial stresses with use of passive hydraulic ankles include: minimizing posterior center of pressure displacement, increasing self-selected walking speed (SSWS), increasing prosthetic ankle-foot negative work (i.e. the energy absorbed by the ankle-foot complex), and minimizing peak internal stress at the distal tibia. The purpose here was to evaluate prior research studies that characterized these four outcome measures between prosthetic-ankle feet with and without passive hydraulic damping on various slopes.

Search Strategy:
Databases Searched: Google Scholar, PubMed, CINAHL
Search Terms: ("trans-tibial" OR "trans-tibial" OR "Below-Knee" OR "below knee" OR "BK") AND (ankle) AND (hydraulic)
Inclusion/Exclusion Criteria: Inclusion: 2000 to present, English, peer-reviewed journal articles

Synthesis of Results: Six studies involving 3-20 participants with unilateral TTA were identified that compared passive hydraulic ankles mounted to low profile carbon fiber feet with multi-axial (MA) or ESR feet. Two studies on level ground found significantly decreased posterior center of pressure displacement with passive hydraulic ankles relative to MA/ESR feet suggesting a smoother rollover with a passive hydraulic ankle. On level ground, mean SSWS showed a small but statistically significant increase for the passive hydraulic ankle-conditions of 0.05-0.09 m/s in three studies, whereas another study demonstrated a decrease, albeit not statistically significant, in SSWS of ~0.05 m/s. However, these changes were all below the minimal detectable change in SSWS of community dwelling older adults (0.11 m/s) and may not be clinically relevant. On level ground in early stance, and decline surfaces throughout stance, prosthetic ankle-foot negative work was significantly larger for the passive hydraulic ankle-feet vs. ESR feet, indicating passive hydraulic ankle-feet dissipate more energy than prosthetic feet with rigid or elastic ankles. Peak internal distal tibial stress was significantly lower when walking with the passive hydraulic ankle-feet relative to ESR feet on both level ground and declines, suggesting passive hydraulic ankles may lower risk of residual limb injury.

Clinical Message: Findings suggest passive hydraulic ankles may improve smoothness of foot rollover and reduce risk of stress related residual limb injury, potentially mediated by increased energy dissipation. Such behavior may be especially important for walking on declines, but perhaps less so for uphill walking, where energy generation is a primary goal. The influence of passive hydraulic ankles on SSWS is likely not clinically significant. Irregularities in statistical analysis, lack of walking speed normalization, lack of blinding to prosthetic ankle-foot type, there being only two studies on sloped surfaces, and the fact that 4 of the 6 articles evaluated were from the same research group are major limitations. Although outside the scope of the selected outcome measures, readers are also referred to a study comparing additional kinetic, kinematic, and subjective outcomes on slopes with and without a passive hydraulic
The influence of passive hydraulic prosthetic ankle-feet on decline and level ground walking

Pawel R. Golyski,1 Maximilian T. Spencer,2 W. Lee Childers PhD, CP2

Georgia Institute of Technology, 1Woodruff School of Mechanical Engineering, 2School of Biological Sciences

Creation Date: December 2017; Date for Reassessment: December 2022

pgolyski3@gatech.edu

ankle.12 Future work in more controlled environments, such as prosthetic test beds,13 may be informative in examining the effects of increased damping behavior of prosthetic ankle-feet, and alternative.

References:

The influence of passive hydraulic prosthetic ankle-feet on decline and level ground walking

Pawel R. Golyski,¹ Maximilian T. Spencer,² W. Lee Childers PhD, CP²
Georgia Institute of Technology, ¹Woodruff School of Mechanical Engineering, ²School of Biological Sciences
Creation Date: December 2017; Date for Reassessment: December 2022
pgolyski3@gatech.edu

<table>
<thead>
<tr>
<th>Evidence Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Study Design</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td>Comparison</td>
</tr>
<tr>
<td>Methodology</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Key Findings</td>
</tr>
</tbody>
</table>
The influence of passive hydraulic prosthetic ankle-feet on decline and level ground walking

Pawel R. Golyski,¹ Maximilian T. Spencer,² W. Lee Childers PhD, CP²
Georgia Institute of Technology, ¹Woodruff School of Mechanical Engineering, ²School of Biological Sciences
Creation Date: December 2017; Date for Reassessment: December 2022
pgolyski3@gatech.edu

| Study Limitations | No blinding to prosthetic ankle-feet. No speed normalization | No blinding to prosthetic ankle-feet. Work only calculated from sagittal plane | No blinding to prosthetic ankle-feet. No speed normalization | No blinding to foot type. No kinetic or kinematic statistics. Small sample size | No blinding to prosthetic ankle-foot type. Potential for inaccuracies in modeling and pressure sensor placement. Degree of slope not presented. | Only blinding to whether microprocessor foot was active/inactive |