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Abstract— General-purpose mobile manipulators have the
potential to serve as a versatile form of assistive technology.
However, their complexity creates challenges, including the risk
of being too difficult to use. We present a proof-of-concept
robotic system for assistive feeding that consists of a Willow
Garage PR2, a high-level web-based interface, and specialized
autonomous behaviors for scooping and feeding yogurt. As a
step towards use by people with disabilities, we evaluated our
system with 5 able-bodied participants. All 5 successfully ate
yogurt using the system and reported high rates of success
for the system’s autonomous behaviors. Also, Henry Evans, a
person with severe quadriplegia, operated the system remotely
to feed an able-bodied person. In general, people who operated
the system reported that it was easy to use, including Henry.
The feeding system also incorporates corrective actions designed
to be triggered either autonomously or by the user. In an
offline evaluation using data collected with the feeding system,
a new version of our multimodal anomaly detection system
outperformed prior versions.

I. INTRODUCTION

Activities of daily living (ADLs), such as feeding, toi-
leting, and dressing, are important for quality of life [1].
Yet for many people with disabilities, such tasks prove
challenging without assistance from a human caregiver. Nu-
merous specialized assistive devices, including specialized
robots, have been developed to help people with disabili-
ties perform ADLs on their own. Each specialized device
typically provides a narrow form of assistance suitable for
people with particular impairments. In contrast, general-
purpose mobile manipulators have the potential to provide
assistance to diverse users with a wide variety of tasks [2].
Yet, the complexity of these general-purpose robots creates
challenges, including the risk of being too difficult to use.

In this paper, we present a proof-of-concept robotic system
for assistive feeding that makes use of a general-purpose
mobile manipulator (a PR2 robot from Willow Garage). In
our evaluation, people who operated the robot generally
found the feeding system to be easy to use. The system
also scooped and fed yogurt to the able-bodied participants
with a high rate of success. In addition, we discuss an
extended version of the progress-based anomaly detector that
we introduced in [3]. Our extended version classifies an
anomaly using a support vector machine (SVM) with output
from a hidden Markov model (HMM). In our evaluation, this
new version outperformed prior versions.
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Fig. 1: Our system feeding yogurt to an able-bodied person.
A person with quadriplegia commanded the system remotely.

II. RELATED WORK

Previous work has presented specialized robots that pro-
vide assistive manipulation for specific ADLs such as
scratching, brushing, or feeding tasks [4], [5]. Since the
specialized design of these robots restricts their ability to
generalize to other tasks, several studies have introduced
general-purpose manipulators—such as 7-DoF arms mounted
on a wheelchair or desk—to provide general assistance near
the human, e.g. picking-and-placing [6], [7], [8], [9], [10],
[11], [12]. However, a fixed base restricts the scope of
assistive tasks [13]. Recently, several studies have introduced
general-purpose mobile manipulators for various assistive
robotic tasks, including shaving, picking-and-placing, and
guiding tasks [2], [14], [15], [16], [17], [18]. To operate com-
plex manipulators, researchers have also introduced easy-to-
use control interfaces for users [19], [20], [21].

Researchers have also investigated robotic feeding assis-
tance [5], [22], [23]. In addition to the absence of mobil-
ity, these previous robotic systems perform passive feeding
actions that move food to a pre-designated location near
the user, but require the user to actively catch the food,
regardless of their disability. Takahashi and Suzukawa, on
the other hand, introduced a feeding system with a human
interface that allowed a user with quadriplegia to manually
adjust feeding locations [24]. Similar to our work, Schrer et
al. proposed an adaptive drinking assistance robot that finds
the user’s mouth with a vision system [25]. However, their
interface relies on electroencephalography (EEG).

III. OVERVIEW OF SYSTEM EXECUTION

Fig. 2 shows the flow of the overall system using a finite-
state machine (FSM). To perform the scooping task, the robot
first estimates the location of the bowl and then scoops a
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Fig. 2: Scooping and feeding finite-state machine. Each Box
represents a state, whereas arrows indicate state transitions.
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Fig. 3: The robot estimate’s the location of the user’s mouth
with a Kinect V2 and an ARTag attached to the user’s head.

spoon full of yogurt. The user can then provide feedback
to the system on whether yogurt is present on the spoon.
The robot re-executes the scooping task if no yogurt is
present, otherwise the system proceeds to the feeding task.
To perform the feeding task, the robot first determines a
location for the user’s mouth by detecting an ARTag attached
to the user’s head (as seen in Fig. 3). A user can send task
commands to the PR2 via the web-based GUI, as well as
stop or resume commands. The stop command is treated as
an anomalous event and acts as specified in the FSM. After
task completion, the user can provide feedback to further
evaluate and tune the performance of the system.

IV. THE SYSTEM
A. Hardware

Our system uses a PR2 robot, a mobile manipulator from
Willow Garage (see Fig. 1). The PR2 consists of an omni-
directional mobile base and two 7-DOF back-driverable arms
with powered grippers. When moving the PR2’s arms, our
system uses low-gain impedance controllers at the joints.
This is to reduce the likelihood of the robot applying high
force to the person’s body. The PR2’s grippers firmly hold
3D printed handles, shown in Fig. 4. On the other side of one
handle, we attached a flexible silicone spoon, a directional
microphone and a force-torque sensor for these scooping and
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Fig. 4: Left: The bowl for yogurt with an attached handle
and ARTag. The PR2 can grip the handle and hold the bowl.
Right: A tool for scooping and feeding that has a flexible
silicone spoon, microphone, and force-torque sensor.

feeding tasks. We also installed a Microsoft Kinect V2 RGB-
D camera on the PR2’s head to detect the person’s mouth
and track the location of the bowl.

B. Task Planning

We incorporated four transition triggers to switch between
states (as shown in Fig. 2). As expected, the multimodal
anomaly detector described in Sec. IV-D can trigger an
anomalous transition. When an anomaly is detected, the
system transitions to a state in which the robot halts or
performs a corrective action. For instance, if a loud and
unexpected sound is detected while feeding, an anomaly is
triggered and the robot will retract its arm to avoid harming
the user. Shared autonomy is also provided in which the
user’s input can trigger the Y, and Y}, transitions. Following
a scooping or feeding cycle, the user can confirm whether
yogurt is present on the spoon. If there is not an adequate
amount of yogurt on the spoon, the user can instruct the
robot to re-scoop some yogurt. Finally, the user can provide
feedback to the system after each task, which labels collected
data to train the anomaly detector described in Sec. IV-D.

C. User Interface

We developed a web-based GUI to transmit task com-
mands, display visual output from the Kinect, and collect
feedback from users (see Fig. 5). In our evaluations, the
users either operated the system with a tablet or a laptop web
browser. The GUI consists of three sections; task selection,
action selection, and evaluation. In the first section, users can
select Scooping or Feeding motions. The selected motion can
then be executed, resumed, or halted through the respective
options in section 2 of the GUI. Note that the halting option
triggers a corrective action described in Fig. 2. The user
may then enter feedback (Success or Failure) after task
completion.

D. Anomaly Detection

We extended the multimodal anomaly detector described
in our previous work [3]. The anomaly detector utilizes a
multimodal HMM to model the sensory signals observed
from non-anomalous operation of the system. Given non-
anomalous training input, the HMM returns a vector of
hidden state distributions, called execution progress, and a
scalar called log-likelihood. Our previous version used a
time-varying likelihood threshold (anomaly decision bound-
ary) that came from clustering progress and log-likelihood
pairs.
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Fig. 5: Left: The web-based GUI as described in Sec. IV-C. Right: The GUI in a Chrome web-browser on a tablet.
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Fig. 6: Anomaly detection framework: The HMM produces
features from a multimodal observation sequence. Then, an
SVM detects anomalies based on these features (Sec. IV-D).

In this work, we apply an SVM instead of clustering,
which we refer to as an HMM-SVM anomaly detection
approach. We provide the HMM-induced features, progress
and likelihood, as the input to the SVM. Fig. 6 shows the
sequence in which output from the HMM is processed by
an SVM with a radial basis function kernel. The SVM
then generates a nonlinear decision boundary for detecting
anomalous observations. Furthermore, we can adjust the
sensitivity of the anomaly detection method by unbalancing
the class weights, w; and w_;, of anomalous and non-
anomalous observations. We varied the weight of anomalous
observations, w1, using the LIBSVM library [26].

V. EVALUATION WITH 5 ABLE-BODIED PARTICIPANTS

We conducted a small evaluation of our system with
approval from the Georgia Tech Institutional Review Board
(IRB). As a step towards use by people with disabilities, we
recruited 5 able-bodied participants. With the PR2 holding
a bowl of yogurt, participants controlled the robot to scoop
and feed themselves (see Fig. 7). We first briefly trained
the 5 able-bodied participants to use the system. As part
of this training, they practiced using it one or two times.
Each practice run took about two minutes. Then, we asked
them to freely use the scooping and feeding tasks. After each
execution of a task, the participant labeled the execution as
a success or a failure with the GUI (see 5). The participants
used the scooping task 77 times and labeled 73 (94.8%) of
the executions as successful. They used the feeding task 83
times and labeled 82 (98.8%) of the executions as successful.
For the 5 failed executions, participants made statements
such as ‘insufficient yogurt on the spoon,” ‘spilled yogurt
from the spoon,” and ‘missed timing of closing mouth.’

We then asked the participants to fill out a survey with
13 questions (five-point Likert items) based on [2]. The fol-
lowing table provides the questionnaire results that we found
most informative. The columns provide response counts for

strongly disagree (sd), disagree (d), neither (n), agree (a), and
strongly agree (sa). The plus sign (+) denotes Henry Evans’s
responses. Overall, participants found the system to be easy
to use and felt safe using it. However, their responses suggest
that the comfort and speed of the system (~2 minutes per
scoop fed) could be improved.

question sd d na sa
The system was easy and intuitive to use 0 0 113+
The system was comfortable to use 02021
The web interface layout and icons were intuitive 0 0 032+
I felt safe during the experiment 0001 4
I was satisfied with the time it took to complete the task 0 2+ 1 1 1

To evaluate our HMM-SVM anomaly detector, we also
asked each participant to perform 10 intentionally anomalous
actions, such as pushing the PR2’s arm while it was scooping
yogurt, making loud or unexpected sounds, or refusing to
open their mouths during feeding. After collecting this data,
we removed 14 outliers by hand to avoid convergence issues
during HMM training. We used the remaining 72 non-
anomalous and 86 anomalous iterations for the scooping
task, and 53 non-anomalous and 39 anomalous iterations for
the feeding task. Fig. 8 displays ROC curves that evaluate
the performance of the detector with respect to the false
positive rate and true positive rate. We performed 4-fold
cross validation varying the class weight of anomalous data
in the SVM. For both tasks, our HMM-SVM approach
outperformed other HMM anomaly detectors that utilized
fixed or dynamic threshold methods.

VI. REMOTE EVALUATION BY HENRY EVANS

We also performed a test with Henry Evans, a person with
severe quadriplegia with whom our lab collaborates with
approval from the Georgia Tech Institutional Review Board
(IRB). From his home in California, USA, he used the web-
based GUI to command a PR2 robot in Georgia, USA to
feed an able-bodied person. Henry used an off-the-shelf head
tracker and a mouse button to operate the web-based GUI.
While using the system, he had visual feedback from the
web-based GUI and a Beam+ (a separate telepresence robot).
Henry successfully used the system to feed yogurt to the
able-bodied participant. When applicable, Henry answered
the survey questions given to the able-bodied participants.
His answers, shown in the previous table with a plus sign
(+), were similar to the able-bodied participants’. In response
to an open-ended question at the end of the survey, he wrote
“overall, worked well, although the PR2 video did not work.”



Fig. 7: The images show the entire scooping and feeding process. The user operated the system via the GUI on the tablet.
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Fig. 8: Receiver operating characteristic (ROC) curves.

In a later email with the subject line “feeding feedback”, he
wrote it is ready for field testing!”, indicating he is prepared
to try out the system in person.

VII. CONCLUSION

We introduced an assistive feeding system that employs
a general-purpose mobile manipulator (a PR2 robot). The
system provides a high-level web-based interface to the
operator that people generally found easy to use. The system
successfully fed yogurt to able-bodied participants and they
felt safe with the system. In offline tests, our new method
of anomaly detection outperformed our previous methods.
Overall, our results suggest that it is feasible for general-
purpose mobile manipulators to provide feeding assistance,
although further work remains. In particular, people with
disabilities have not eaten with our current system.
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