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Abstract—Future SoCs are expected to have irregular on-
chip topologies, either at design time due to heterogeneity
in the size of core/accelerator tiles, or at runtime due to
link/node failures or power-gating of network elements such
as routers/router datapaths. A key challenge with irregular
topologies is that of routing deadlocks (cyclic dependence
between buffers), since conventional XY or turn-model based
approaches are no longer applicable.

Most prior works in heterogeneous SoC design, resiliency,
and power-gating, have addressed the deadlock problem by
constructing spanning trees over the physical topology; mes-
sages are routed via the root removing cyclic dependencies.
However, this comes at a cost of tree construction at runtime,
and increased latency and energy for certain flows as they are
forced to use non-minimal routes. In this work, we sweep the
design space of possible topologies as the number of discon-
nected components (links/routers) increase, and demonstrate
that while most of the resulting topologies are deadlock prone
(i.e., have cycles), the injection rates at which they deadlock are
often much higher than the injection rates of real applications,
making the current solutions highly conservative.

We propose a novel framework for deadlock-freedom called
Static Bubble, that can be applied at design time to the
underlying mesh topology, and guarantees deadlock-freedom
for any runtime topology derived from this mesh due to power-
gating or failure of router/link. We present an algorithm to
augment a subset of routers in any n×m mesh (21 routers in
a 64-core mesh) with an additional buffer called static bubble,
such that any dependence chain has at least one static bubble.
We also present the microarchitecture of a low-cost (less than
1% overhead) FSM at every router to activate one static bubble
for deadlock recovery. Static Bubble enhances existing solutions
for NoC resiliency and power-gating by providing up to 30%
less network latency, 4x more throughput and 50% less EDP.

Keywords-Networks on chip; Deadlocks; NoC Power Gating;
NoC Fault tolerance; Irregular topologies;

I. INTRODUCTION

With increasing core count in chips [1], [2], Network-
on-chip (NoC) has today emerged as the de-facto on-chip
communication fabric because of its proven scalability com-
pared to the bus based interconnect [3]. Regular topologies
such as meshes are preferred on-chip due to their simplicity
and ease of layout. However, in future, we should expect to
see increasing instances of the on-chip topology becoming
irregular. As Fig. 1 shows, this could occur at design time
- due to heterogeneous sized big cores, little cores, GPUs,
and other accelerators interconnected together-, or at runtime
during the lifetime of a chip - due to link/node failures [4],
[5], [6], [7], [8], or even due to power-gating of network
elements such as routers/datapaths/link-drivers [9], [10],
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Figure 1: Irregular On-Chip Topologies due to (a) Heteroge-
neous SoCs (b) Router or Link failures/gating.
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Figure 2: Percentage of deadlock-prone irregular topologies
for a given number of faulty/absent/off routers and links in a
8×8 Mesh. (See Section V-A for simulation methodology).

[11], [12]. A key problem in irregular network topologies
is that of deadlocks. A deadlock occurs when there is a
cyclic buffer dependency chain in the network such that no
forward progress can be made (Fig. 1(b)).

The problem of deadlocks becomes more severe in ir-
regular topologies as these topologies offer much less path-
diversity compared to a regular topology like a Mesh and
thus are more prone to deadlocks. In Fig. 2 we sweep the
design space of all resulting topologies as the number of
links and routers in an underlying 8×8 mesh substrate are
removed, and count the percentage of topologies which are
deadlock-prone1, i.e., have cycles in their topology graph.
Even with very few random faults, we see that all the
probable topologies are deadlock-prone. This evinces the
need for providing a solution to this problem for functional
correctness of the chip. Beyond 65 link and 30 router faults,
the resulting topologies are heavily partitioned and no longer
have any cycles. However at this point, the chip itself may
be unusable if certain key components such as the memory
controller become unreachable.

Deadlocks in irregular topologies is one of the key themes

1We obtain this plot by injecting a flit every cycle from every node for a
random destination in every topology for a million cycles, and observing if
the network deadlocks. Each flit randomly chooses from one of its possible
minimal routes without any routing restrictions. A network with zero-
faults is also deadlock-prone by definition, unless a deadlock-free routing
algorithm like XY is chosen.



Figure 3: Heat-map of the cumulative frequency distribution
of irregular topologies that deadlock at a particular injection
rate for a given number of faulty links with uniform random
traffic. (See Section V-A for simulation methodology).

in works across 3 domains: heterogeneous SoC synthe-
sis [13], NoC resiliency [4], [7], [5], [6], [14], [8], and
NoC power-gating [9], [10], [12]. It gets exacerbated in
the resiliency and power-gating domains as the irregular
topology changes dynamically. The most common solution
to address this, is to construct spanning trees over the
irregular topology, and route packets in all Virtual Channels
(VCs) (or within an escape VC) via the root to avoid
deadlocks. This approach has two challenges:
(1) Routing via the root makes certain routes non-minimal
(for instance A’s packet being routed via the root to B (10
hops) instead of minimal (2-hops) in Fig. 1, to avoid a
cyclic dependency) and reduces path diversity. This adds
latency, throughput, and energy penalties at the network-
level, which in turn affect full-system runtime, as we show in
our evaluations. There is also a huge variance in the potential
performance impact, depending on the topology instance and
spanning tree.
(2) Constructing an optimized spanning tree across all
possible root nodes, while maintaining a high-connectivity,
reducing average hops, and providing sufficient bandwidth
over the irregular topology is an exponential state-space
search, and often requires optimization solvers [15] running
in software and 1000s of cycles for reconfiguration [5].
A significant body of work in the NoC resiliency domain
is solely focused on coming up with better heuristics for
hardware/software co-solutions for this unavoidable prob-
lem [4], [5], [8]. Unfortunately, this state space exploration
is required every time a new link/router turns off/on or fails,
since the optimal/heuristic solution may be very different,
which adds to design and verification complexity. And the
resulting performance can still be up to 2-4× worse than that
with all minimal routes (for Rodinia workloads (Section V)).

In this work, we make the following key observation -
despite most irregular topologies being deadlock-prone as
Fig. 2 showed, the chances of deadlocks actually occurring
at runtime are fairly low. Fig. 3 plots a heat map of
the percentage of topologies that deadlock at increasing
injection rates with uniform traffic, as a function of increas-
ing number of disconnected links in a 8×8 mesh. Most

topologies only start to deadlock at injection rates around
0.1-0.3 flits/node/cycle, which are fairly high since most
real workloads on multicores have an order of magnitude
lower network injection rates due to high L1 hit rates, as
we observed via full-system simulations on a 64-core system
with PARSEC 2.0 [16] and Rodinia [17] benchmarks.

Based on this insight, we make a case for deadlock-
recovery, rather than avoidance, for heterogeneous/resilient
NoCs going forward. The only known techniques for dead-
lock recovery rely on escape VCs providing a deadlock-
free route to drain deadlocked flows [18], [19], [20]. While
this can address the first challenge of non-minimal routing
prior to deadlocks, it does not address the second challenge
of constructing a deadlock-free route over the irregular
topology for the escape VCs. Moreover, the “deadlock-free
route” may disallow certain links and make parts of the
original NoC inaccessible as soon as a deadlock occurs,
making this approach infeasible.

In this work, we address both the listed challenges.
We present a novel plug-and-play framework for deadlock
recovery that can be applied to any mesh topology at
design time and guarantees deadlock-freedom across any
topology (regular/irregular) derived from this mesh, either
statically (to build a heterogeneous SoC) or at runtime (due
to faults/gated components). There are no escape channels
with routing restrictions. All flows can use minimal routes all
the time, removing the spanning-tree construction challenge
completely and associated performance/energy penalties.
Our framework consists of two components:
(1) A novel algorithm to augment a subset of routers in a
mesh (21 in 64 core, 89 in 256 core) with an additional
buffer called Static Bubble at design time, such that any
dependency chain passes through at least one node with a
static bubble.
(2) A low-cost FSM microarchitecture embedded in every
router that intelligently activates (and deactivates) static
bubbles upon detection of a deadlock and performs recovery.

We demonstrate that Static Bubble is a significantly more
performance, energy and area efficient solution than con-
servative spanning-tree or escape-channel based approaches.
Across the irregular topology design space sweeping both
router and link faults, we demonstrate a 20% latency, up to
4× throughput, and 53% network EDP improvement with
synthetic and real (PARSEC and Rodinia) apps. Since our
framework is general-purpose and plug-and-play, it is easy
to design and verify, and can augment MPSoC topology
generators [13] and current state-of-the-art NoC resiliency
and NoC power-gating solutions.

The rest of the paper is organized as follows. Section II
discusses background and related work. Section III intro-
duces our algorithm for static bubble placement and Sec-
tion IV presents the microarchitecture and implementation of
our deadlock recovery scheme. Section V presents evaluation
results and Section VI concludes.



II. BACKGROUND AND RELATED WORK

We present mechanisms for NoC deadlock-freedom em-
ployed by recent solutions across resiliency and power gat-
ing domains, providing adequate background as necessary.

A. Deadlock Avoidance
Turn Models. Traditionally, regular topologies like Mesh

have relied on using deadlock avoidance schemes like
dimension-ordered XY routing [21] to achieve deadlock
freedom. These schemes, based on the turn model given
by Glass and Ni [22], place turn restrictions to avoid cyclic
dependencies. For instance, in XY routing, flits are restricted
from making a Y (North/South) to X (West/East) turn.
However, turn model based schemes rely on having at least
two paths, and do not work in a scenario where the topology
is irregular and changes dynamically. This is because the
turn restrictions may lead to certain core/set of cores not
being able to communicate with others leading to a dead-
lock or a disconnected topology even though healthy and
fully functional links are present in the otherwise irregular
topology that connect them [23].

Spanning Trees. To overcome this limitation of tra-
ditional deadlock avoidance schemes, state-of-the-art NoC
designs in the resiliency and power-gating domains construct
a spanning tree over the surviving nodes and links and
use it to route packets in the irregular topology and avoid
deadlocks [4], [5], [8], [6], [12], [10]. Ariadne [4] adapts the
topology-agnostic off-chip up-down [24] routing algorithm
to find deadlock-free paths in the irregular topology. Up-
down routing enforces strict ordering of nodes in the network
by marking the links towards the root node as up, those away
as down, and arbitrarily tagging the equidistant ones [8].
All cyclic dependencies in the network are broken by dis-
allowing turns from a down-link to an up-link. uDIREC [5]
extends this work to cover unidirectional link failures by
modifying the methodology of spanning tree construction.
Panthre [12], a recent work in the NoC power-gating domain,
also leverages up-down routing. Spanning tree based routing,
however, makes certain paths non-minimal. We model this
as our first baseline in the evaluations.

Alternate approaches in Resilient NoCs. Vicis [7] uses
a heuristic to determine routing turn restrictions for deadlock
avoidance. This heuristic however fails to guarantee dead-
lock freedom as prior works point out [4]. Immunet [6] uses
local Bubble Flow Control (BFC) [25] in a ring constructed
using the spanning tree of remaining nodes in the network.
This work however uses three routing tables and offers poor
performance compared to our first baseline [4]. BLINC [8]
and Balboni et al. [26] use segment routing [23], where the
network is divided into segments, each with a different turn
restriction. They, however, place a restriction on the number
and/or the location of faults and thus cannot handle arbitrary
irregular topologies. Wachter et al. [27] partition the VCs
into 2 classes where each class uses a different deadlock-

free turn-restriction based routing (for example west-first for
Class I and east-first for Class II). A packet requesting an
illegal turn in Class I is put into Class II. However a packet
in Class II cannot go back to Class I. This again has the
limitation of not being able to guarantee connectivity in any
arbitrary irregular topology. Fattah et al. [14] use deflection
routing [28] on encountering faulty links, but this adds high
complexity for achieving deadlock and livelock freedom.

Alternate approaches in Power-gated NoCs. Two recent
techniques, Power Punch [11] and CatNap [29], maintain
network regularity for routing purposes by switching-on
routers that fall in the path of the flits which are routed using
deadlock-free XY routing. This is orthogonal to our work
as we target irregular topologies (both static and dynamic).

B. Deadlock Detection and Recovery
Traditionally, deadlock detection and recovery has not

been a very popular approach for achieving deadlock free-
dom in regular topologies like a Mesh because deadlock
avoidance schemes like XY are easier to implement, while
providing adequate path diversity to traffic despite turn
restrictions. In irregular topologies, however, as discussed
earlier, traditional deadlock avoidance schemes do not work,
while spanning-tree based schemes provide non-minimal
paths to traffic. Based on our analysis in Fig. 3 that shows
deadlocks to be rare in irregular topologies at low loads, we
look at deadlock recovery schemes as a possible solution to
provide minimal paths to the network traffic and guarantee
deadlock freedom at the same time.

DISHA [18] was an early work in the deadlock recovery
domain that detected deadlocks using counters present in
each buffer queue in the network. Upon the detection of
a deadlock, a router would wait to capture a token that
circulated through the network all the time using dedicated
links. After capturing the token, the packet would be put in
a reserved network of buffers (one buffer per router) and
routed minimally. After the packet reached its destination,
the token would be released, breaking the dependency chain.

DISHA and its recent variants [19], [20] will not work in
a dynamically changing irregular topology as they need a
path connecting all nodes to circulate the token. Computing
this path in a dynamically changing irregular topology is a
non-trivial task. In addition, the scheme uses XY routing
for its reserved network which as pointed out earlier, cannot
guarantee packet delivery between any source and destina-
tion pair in an arbitrary irregular topology. If DISHA were
to use spanning-tree based routing for the reserved network
it would still be inefficient due to the latency and energy
overhead of the circulating token.

Ping and Bubble [30] was a subsequent idea to DISHA
for off-chip networks that sends a ping from an output port
upon detection of a possible deadlock. The ping traverses a
control network to trace the deadlocked dependency chain
and reserve the output ports at all routers along the route. If



the ping returns, it is a deadlock and an extra deadlock buffer
is turned on to drain the deadlock (and turned off when the
bubble returns). False positives may occur, i.e., paths may be
reserved even if there was no real deadlock, but the design
does not handle them. This scheme was proposed for off-
chip networks where area and energy are not as precious
as in on-chip router implementations. We employ a similar
ping for the dependence chain detection phase.

Escape VCs. An alternate approach to spanning trees
for achieving deadlock freedom in an irregular topology is
to use an escape-VC [31]. In this approach, all VCs use
deadlock-prone minimal paths to route traffic except one
(the escape-VC) which uses a deadlock-free routing path.
Deadlocked packets drain out using the escape-VC. The
concept of escape VCs can be used as an avoidance scheme,
if packets can actively go into it, or as a recovery scheme
if they are enabled upon detection of a deadlock. Escape
VCs require an additional VC (buffer) per message class per
input port at every router in the network. A separate routing
table is also required for identifying the deadlock-free escape
path in the irregular topology. In addition to the energy and
area overhead of the extra buffers and routing tables, prior
works [4] have shown that escape VCs cause throughput
loss since one VC per message class per input port always
needs to be kept reserved. NoRD [9], recently proposed for
NoC power-gating, uses a high-latency deadlock-free ring
snaking around the network as the escape VC path. Packets
are made to enter the escape-VC after their misrouted hop
count increases by a certain threshold. Router Parking [10]
replaces the high-latency ring of NoRD with a spanning tree
constructed using up-down routing. Deadlocks are detected
using a timer and packets in a deadlock get routed using
the escape path. Since escape paths based on spanning trees
offer better performance (in terms of lower hop count in the
escape path) compared to the ring connecting all routers, we
model this as our second baseline in the evaluations.

C. Bubble Flow Control in Rings
Bubble Flow Control [25] is a popular flow control

technique for ring topologies (or each dimension in a Torus)
that avoids deadlocks by ensuring that there is at least
one bubble (one empty buffer) in the ring all the time via
intelligent injection. In this work we leverage the underlying
theory behind this technique: as long as there is one bubble
within a dependence chain, there will be no deadlock and
forward progress can be made by flits. The Static Bubble
scheme places a buffer (called static bubble) in a subset
of routers in a mesh via a novel placement algorithm at
design time that guarantees the presence of at least one
static bubble in any dependency chain in the mesh
network. Upon detection of a deadlock, a static bubble is
introduced in the deadlocked ring at runtime and a novel
flow-control strategy is run to recover from the deadlock
and break the dependence chain. Since Static Bubble can
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Figure 4: Placement of static bubbles on a 8x8 mesh at design-
time to guarantee a bubble in any possible cycle.
handle any possible dependence chain in the mesh network,
any irregular topology based on the mesh topology can be
made deadlock-free.

D. Routing over Irregular Topologies.
Prior works across resiliency and power-gating use a mix

of hardware [4], [5] and software [8], [10], [12] techniques
to identify connectivity among the currently active routers
and links upon detection of a fault or upon turning on/off
certain nodes. Disconnected components are discarded, and
routing tables are populated at the source NI or at every
router. We leverage this rich body of work, and add a routing
table at every source NI that populates every packet with a
route to its destination. In our spanning tree baseline, this
route is spanning-tree based and may be non-minimal, while
for escape VC and Static Bubble, this route is minimal (but
deadlock-prone). For the escape VC baseline, a spanning
tree routing table is used within the escape VCs.

III. STATIC BUBBLE PLACEMENT
We present an algorithm for the placement of static bub-

bles in an arbitrary n×m mesh topology that guarantees that
there will be at least one static bubble in every possible cycle
within every possible irregular topology on the underlying
mesh, without having to add a bubble to every router.
The algorithm describes a systematic way to decide the
placement, but alternate hand-optimized placements, some
with fewer static bubbles, are also possible.

For node (x, y) in any n×m mesh, we add a static bubble
if x > 0 and y > 0 (i.e., no bubbles on the first row and
column), and any one of the following conditions hold:
(1) x mod 4 ≡ y mod 4
(2) x mod 4 ≡ 1 and y mod 4 ≡ 3
(3) x mod 4 ≡ 3 and y mod 4 ≡ 1

Fig. 4(a) shows the placement of 21 static bubbles in a
8×8 Mesh. Visually, the nodes on the solid diagonals satisfy
condition (1), while the ones on the dotted diagonals satisfy
conditions (2) or (3).

Lemma: There is at least one static bubble in every
possible cycle within the mesh.

Proof: Starting at node (x,y) in a mesh, any cyclic buffer
dependency chain needs to return to the same node (x, y).
Case I. Node (x, y) itself contains a static bubble. The proof
is trivial in this case since any cycle going through it will
have at least one static bubble.



Case II. Node (x, y) does not contain a static bubble. The
coordinates of any such node (except on the first row and
column) will be of one of the following 5 forms: (4k+2, 4l),
(4k+1, 4l), (4k+3, 4l), (4k+2, 4l−1), (4k+2, 4l+1), or the
mirror images of this (swap k and l). Fig. 4(b) demonstrates
this. All five nodes are bounded by static bubbles. Every
hop or turn is an increment or decrement of k or l. It
is not possible to make 4 turns (the requirement to get a
cycle2), without encountering a node that satisfies one of
the 3 conditions of the placement algorithm3.

As a corollary, any irregular topology derived from such
an underlying mesh will also have at least one static bubble
in any dependence cycle. Even if the nodes with static
bubbles are themselves faulty/turned-off, the dependence
chain gets broken and the network will still be deadlock
free. The same static bubble node could be part of multiple
dependency chains and resolve deadlocks in all of them
(Section IV-B).

The number of static bubbles in a n×m mesh used by our
algorithm is:

[m4 −1]∑
k=0

(min(m− 4k, n)− 1) +

[m2 ]∑
l=1,lεodd

(min(m− 2l, n)

2
+

[n4 −1]∑
p=1

(min(m,n− 4p)− 1) +

[n2 ]∑
r=1,rεodd

(min(m,n− 2r)

2

(1)
where [] represents the Greatest Integer Function (GIF). The
bubble count scales linearly with the min. of (m,n) which
keeps the complexity of the scheme low.

IV. DEADLOCK RECOVERY WITH STATIC BUBBLES

We define Static Bubble (SB) routers as the nodes that
the algorithm in Section III picks. In each SB router, we
assign one extra packet-sized buffer4 called static bubble
and one special counter with a finite-state machine at design
time. When the system starts, all the static bubbles are off;
they are turned on by the counter FSM upon detection of a
deadlock. The FSM has 6 states, as shown in Figure 5, and
manages deadlock detection and recovery. The counter can
count5 from 0 up to two possible thresholds (depending on
the FSM state): tDD (DD = Deadlock Detection), which
is a configurable parameter and tDR (DR = Deadlock
Recovery), which is set dynamically based on the length
of the deadlocked cycle. There are four special messages
that aid in deadlock detection and recovery: probe, disable,
check probe and enable.

2We assume packets cannot take 180 degree, i.e., u-turns in our design.
3The first row and column do not have static bubbles since turns in all

directions are not possible and thus fewer bubbles are required.
4For simplicity, we size the static bubble to be as deep as data packets

(5-flits); though sometimes it may be occupied by 1-flit control packets.
5The counters can be off if the entire mesh is ON with no faults/gated

components and using say XY routing.

State:	SOFF
Counter:	Off

State:	SDD
Counter	Thres:	tDD

State:	SDISABLE
Cntr Thres:	tDR

State:	SENABLE
Counter	Thres:	tDR

State:	SSB_ACTIVE
Counter:	Off

State:	SCHECK_PROBE
Counter	Thres:	tDR

new flit/ rsc / -

flit leaves & vc(s) active/
increment_counter_pointer, rsc/ -

Timeout/ rsc
/send probe

probe rcvd/store path, 
rsc/ send disable

disable rcvd/
set 
is_deadlock,
compute IO 
priority buffer,
switch on SB, 

stop counter / -

SB re-claimed/ switch off SB, 
rsc / send check_probe

check_probe rcvd/ switch on SB, 
stop counter/-

enable rcvd & VCs active/ 
increment_counter_pointer, 
reset is_deadlock, rsc/ - Timeout/rsc/ send 

enable

Timeout/ rsc /
send enable

enable rcvd  & 
no VC active /
reset is_deadlock,
stop counter / -

Format: 
Triggering event/ internal 
actions / output message

flit leaves & no VC active/
stop counter/-

Timeout / rsc / send enable

rsc: restart counter 
SB: Static Bubble
DD: Deadlock Detection
DR: Deadlock Resolution

Figure 5: Finite State Machine of Counter

A. Walk-through Example

The FSM starts in the SOFF state. When a new flit arrives
at the router (at any port other than the local), the state is
changed to SDD and points to the VC it occupies with the
threshold set to tDD. This deadlock detection threshold is a
configurable parameter in every static bubble router. If the
flit leaves within the threshold time, the FSM points to the
next non-empty VC (VC in active state) in the router in a
round-robin manner and the counter is reset and restarted. If
all VCs at the router are idle, the FSM goes back to SOFF .

We explain the operation of the FSM and all its states
using the walk-through example in Fig. 6. Each buffer
dependence in the figure is marked with the packet(s) that
want to use it to go to the next hop. As can be seen,
there exists a deadlock due to the following cyclic buffer
dependency chain:

(A,B)→(C)→(E,F)→(G,H)→(I,J)→(K)→(A,B)
Each VC can hold one packet. We assume Virtual Cut-

Through (i.e., packet-sized VCs) and describe all dependen-
cies at the packet level for simplicity, though a flit-level
design would also work.

1) Probe Traversal (Fig. 6(a)): The counter at node 5
reaches its threshold in SDD state (Step 1) as packet I does
not leave within the threshold time. Node 5 sends out a
probe message (Step 2) from the North output port (output
port for packet I) to detect if there is actually a deadlock,
and not a false positive due to congestion. The counter is
reset and restarts counting with the same threshold tDD.

At each router, if all VCs at the input port of the probe are
active, the probe is forked out of all the output ports that
any of the VCs at that input port are waiting on (except
ejection). Otherwise it is dropped. The forking operation
creates identical copies of the probe message, so all the
information already present in the probe is retained. The
router appends the input to output turn (Left Turn (L) or
Right Turn (R) or Straight (S)) in each output probe. For
instance, packet K wants to go West while packet Z wants
to go East, hence the probe is forked out of these output
ports (Step 3). Node 2 appends a L to the probe that goes
West, while it appends a R to the probe that went East.
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(c) Check Probe Traversal.
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(d) Enable Traversal.

Figure 6: Walk-through Example

At node 3, the probe is dropped (Step 4a) as packets M
and N are waiting to get ejected, and thus are not part of
any deadlock dependence chain.

At nodes 1, 4, 6, and 7, the probe is forwarded out of the
south, south, east, and north output ports (Step 4b), and the
turns L, S, L, and L are appended respectively.

When node 5 receives the probe back (Step 5), the
dependence chain is confirmed, and the path acquired by
the probe (L, L, S, L, L) is latched in a special buffer called
Turn Buffer (Step 6).

What if the counter expires before the probe returns,
or all copies of the probe got dropped? The counter
restarts and resets, and the FSM sends out a new probe. This
however cannot continue infinitely. If there is deadlock, the
probe would return. Else things may be moving slow due to
congestion. Eventually, the congestion will clear-up and the
flit would leave.

What if the flit leaves by the time the probe returns?
This is just a false positive and does not affect correctness.
The next set of actions still occur.

2) Disable Traversal (Fig. 6(b)): Node 5 changes the
FSM state to SDisable and the counter threshold to tDR (Step
7). tDR is set to 2 times the length of the path brought back
by the probe, as the disable message is guaranteed to return

within this time, unless it is dropped, as will be explained
later in Section IV-C. The same value of tDR is also used
by the check probe and enable messages, as shown later.

A disable message is sent (Step 8), embedded with the
path of the probe and the node-id of the sender (node 5).

Upon receiving the disable, each router disables injection
of traffic from any other port into the turn specified by the
disable. For instance, node 2 (Step 9) extracts the first turn
field, Left (L) from the disable entering at the south input
port, and identifies that this corresponds to a south to west
turn. It stores this in a IO priority buffer and the node-id of
the sender in a source-id buffer. It also sets an is deadlock
bit to 1. The is deadlock bit, if set, instructs the switch
allocator at node 2 to disable injection into the West output
port from every input port except the South input port. In
other words, no other flit is allowed to enter the detected
dependence chain. Node 2 then removes the first turn from
the disable message and sends it out of the West port.

All nodes along the dependence chain (1, 4, 6 and 7)
do the same thing (Step 10). At each node the first turn is
stripped away from the disable message and it is forwarded
out. This ensures that the turn corresponding to the node
is always the first turn in the disable message when it is
received, speeding up the forwarding circuitry.



Once the disable is received back at node 5 (Step
11), it begins deadlock recovery (Step 12) by setting its
is deadlock bit and the ports for its IO priority buffer to
South and North respectively.

The static bubble is now switched ON (Step 13), and the
FSM moves to SSB Active. In this state, there is no threshold,
and the counter does not increment its count.

We have now introduced a bubble into the deadlocked
ring, and disabled any other packets from entering it
except the ones already there. This will allow packets in
the deadlocked ring to move forward one step. This can be
seen by looking at the buffer occupancy change between
Figure 6(b) and (c). Once the SB is switched on, this is
conveyed to node 7 via standard credit flow control messages
(not shown). Packet G from node 7 comes and occupies it.
This allows packets E, C, A and K to each move by 1 hop.
Packet G sitting in the static bubble moves to VC1 at node
2 and the static bubble becomes empty again6.

Why is the disable signal necessary? If we turn on the
static bubble without the disable, a new packet may come
and occupy it. In this case, we will be back to a deadlocked
ring without any recovery mechanism.

3) Check Probe Traversal (Fig. 6(c)): Once the dead-
locked ring moves forward one step, the static bubble is
re-claimed and switched off (Step 14).

At this point, the FSM moves to SCheck Probe (Step 15),
tDR remains the same as before, and a check probe message
is now sent out along the same path as the disable (Step 16).
Unlike a regular probe, the check probe is not forked, but
simply forwarded along the same dependency cycle as long
as at least one VC is still a part of that dependence chain
(indicated by the IO priority buffer).

If the check probe returns, the static bubble is again
switched on and the dependence ring moves forward one
more step7. In the example, the check probe is dropped
at node 4 (Step 17) as both the packets (A,D) in north
input port VCs do not want to use the south output port.
If the check probe does not come back, it indicates that the
deadlock due to the previously detected dependency chain
has been resolved.

4) Enable Traversal (Fig. 6(d)): If the counter reaches its
threshold, and the check probe has not returned, the FSM
moves to SEnable, tDR is again retained to be 2 times the
length of the path in the Turn Buffer and the counter is re-
started (Step 18).

An enable message is now sent out along the same path
(Step 19), embedded with the turns and the node-id, just

6If packet G does not want to use the north output port of the router
after moving to node 5, and is stuck waiting for some other output port,
we still have packet I that wants to go north. Packet I would then move
north vacating VC1 at node 5. Packet G would move from the static bubble
to VC1 and thus the SB would be freed and re-claimed/switched off.

7This is an optimization to speed up deadlock recovery. Even if the
check probe did not exist, eventually the counter will again expire, and
send out a regular probe, repeating the same process.

like the disable.
Each router along the path checks if the node-id field in

the enable matches with its source-id buffer, and if it does,
clears the is deadlock bit and IO-priority buffers (Step 20
and 21). This resumes normal traffic flow across all ports
since the deadlock has been resolved.

Once the enable returns to the originating node (Step
22), it resets the is deadlock bit and clears the Turn Buffer
and IO-priority buffer (Step 23). The deadlock has been
resolved. The FSM points to another non-empty VC (in a
round-robin manner), its state is updated to (SDD), and the
counter starts counting up to tDD. If all input ports, other
than the local injection port, are empty, the FSM moves to
SOFF .

Why do routers need to check if the node-id field in
the enable matches its source-id buffer? It is possible for
a router to receive an enable from a different router than the
one that sent it the disable, as discussed in Section IV-B.

Next, we discuss how the design guarantees deadlock
recovery in the midst of multiple special messages from
multiple static bubbles.

B. The Devil is in the Details

A strict priority order (Sec. IV-C) in processing of mes-
sages at each node prevents races and ensures all routers in
a deadlocked chain maintain a consistent micro-architectural
state. At the static bubble node, in addition to the priority
order, the FSM provides additional control in processing
of messages which ensures that the FSM state cannot be
changed by other nodes once it has started the recovery
operation. Together these guarantee functional correctness.
Here we discuss some of the interesting corner cases.

What happens if there are two or more static bubble
nodes in a deadlocked cycle and both send out probes?
The static bubble node with the higher id is responsible for
resolving the deadlock. If a static bubble node receives a
probe from another static bubble node with a lower id, it
drops that probe, ensuring that only its own probe, sent
earlier or later, will complete the full loop and later send
out the disable/enable messages.

What if there are deadlocks in two cycles that are
both sharing only one static bubble? The static bubble
will successfully resolve the deadlocks one after the other,
depending on which direction it sent the probe out first.

What happens if a static bubble node sends a probe,
followed by a disable, and then receives a copy of its
probe back? This means that there are two dependence
cycles that this static bubble is part of, in the same direction.
Since the disable for the first one has been sent, the second
probe will be dropped. Once the first deadlock resolves, the
timeout counter will send out a new probe and resolve the
second deadlock if it still exists. Multiple deadlocks can be
resolved in parallel by multiple static bubbles, but if the



same static bubble is part of multiple deadlocked rings, it
resolves them serially.

Why do we need to fork the probe? Can we not drop
the probe if all VCs at the input port do not want to
use the same output port? There may be buffer dependency
scenarios where one buffer dependency cycle may depend on
another. In the walk-through example, if the probe message
was dropped at node 4 and there was such a dependency
cycle, the deadlock would never get resolved.

Can a probe loop around infinitely due to buffer
dependency? No. Each turn takes 2-bits to encode. Since
special messages like probes, disables, etc. are all one flit
messages, in a 64 core mesh assuming 128-bit wide links,
the probe can only carry a maximum of 59 turns (3-bits for
message type + 6 bits for sender node-id). After the turn
capacity of the probe is exhausted, it is dropped.

Can false positives (i.e., no real deadlock) lead to
enabling of the static bubble? If there is no dependence
cycle, the probe will get dropped without returning. There
may however be dependence cycles due to congestion which
make the probe return. In this scenario, the disable is sent
out. If any of the intermediate nodes, including the sender,
no longer have the same buffer dependence as earlier, the
disable is dropped. In some cases congestion may lead to
the probe and disable successfully returning, and the static
bubble turning ON. It will let the dependence chain move
forward by one and turn OFF again, and so there is no
correctness problem.

What if a node receives two probes or disables or
enables in the same cycle? Send the one with the higher
node-id and drop the other. The FSM at the sender of the
dropped probe/disable/enable will handle retransmissions.

Can a non static bubble node receive more than one
disable, one after the other? A node will not receive more
than one disable signal from the same sender. But it can
be part of two dependence cycles and receive disables from
static bubble nodes in each cycle. If the is deadlock bit is
already set, the second disable would be dropped.

What happens if a disable gets dropped midway and
does not return to the sender node? The static bubble
router FSM in SDisable state will timeout and send an enable
(Figure 5) since the nodes that the disable went to before
getting dropped would have processed it and placed injection
restrictions, which now need to be removed.

Can a static bubble node receive a disable/enable when
it has itself sent a disable/enable? The same static bubble
may be a part of two dependence cycles. In the first cycle
it may be the highest id and send a probe and then a
disable/enable. In the second cycle it may have the lower
id and let the probe from the higher id pass through earlier.
Now it receives an enable/disable from that cycle. Since it is
in SDR state, it will drop that disable/enable. Effectively the
first chain clears its deadlock followed by the second one.
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Figure 7: Router Microarchitecture: Additional
Probes/Disable/Enable Circuitry (in gray).

Which state the does the FSM of a static bubble node
go to, if it receives a disable from a higher-id static
bubble node? The counter would go to the SOff state.
When the enable messages arrives, the counter pointer will
be incremented to point to a non-empty VC and its state
changed to SDD.

What if a node receives an enable from a node that is
different from the node that sent it the disable? This can
happen since different VCs at the various ports of a node
can be part of multiple dependence chains. If the node-id
carried by the enable does not match the source-id stored at
the node, the enable message is not processed and is simply
sent out of the port calculated from the turn, not dropped.

C. Router Microarchitecture

We use the following features to make our scheme low-
cost and plug-and-play:
• All the special messages: probe, enable, disable and

check probe are not buffered anywhere in the network.
When these messages arrive at a node, they are either
sent out of their intended output port or dropped at the
node. Thus, the transmission of these special messages
is completely bufferless which saves area and energy.

• All the special messages use the same links as the
regular flits and get higher priority8. Thus there are no
additional wires.

• The processing of the special messages is carried out in
parallel units off the critical path of the router pipeline
for flits. The only component we add is a mux at
the output port that selects between different messages
(including flit) during the link traversal stage. Implemen-
tation of the design in 32nm DSENT [32] shows that this
does not increase our critical path, which is dominated
by the switch allocator, and we can still use a state-of-
the-art single cycle router [33].

Fixed Delay of Messages. A highly unique and useful
feature of our design is that once a probe returns with

8During a deadlock the output links are idle since the flits are stuck, and
hence leveraging these for the special messages does not have any major
performance implications.



the deadlocked path, the delay of disables, check probes,
enable is fixed: 2×path length9. This is due to the traversals
being bufferless, and having higher priority over flits. If
the message does not return in this time, it means it was
dropped. The FSM (Fig. 5) transitions to an appropriate state
and transmits an enable in all these cases without having to
worry about race conditions.

If there is only one static bubble in a dependence cycle,
things are simple: a router will receive one of the special
messages, as the walk-through example showed. However,
if there are multiple static bubbles within a dependency
cycle, or a router is a part of more than one dependency
chain, multiple static bubbles can start sending probes and
other signals which arrive at a router in the same cycle. In
any cycle, a router can receive up to 4 special messages
(probe/disable/enable/check probe) from its 4 input ports
leading to 43 different combinations. Since there are no
buffers, the router will forward upto one message from the
output port(s) and drop the rest/all. A strict priority order is
enforced to guarantee correct deadlock recovery.

Figure 7 shows the microarchitecture of each router. The
router contains standard units like VCs at each input port,
Switch Allocator, Virtual Channel Allocator and the Cross-
bar Switch. The units colored grey show the components
that we have added in a standard NoC router. Each incoming
special message is demuxed into an appropriate unit.

• Probe Fork Unit (per input port): This unit sends one (or
none) probes to every output port. It checks the output
ports that the VCs at the input port want to use and
creates a copy of the probe for each. If multiple probes
want to use the same output, Probe Sel selects the one
from the highest node-id and drops the rest.

• Enable/Disable Processing Unit (centralized): This unit
is responsible for sending one (or none) disable or enable
to an output port. It sets (clears) the is deadlock bit, the
IO priority buffer and source-id buffer from the disable
(enable). If both an enable and disable are received for
the same output port, then if the is deadlock bit is set, the
enable is sent and the disable dropped, else the opposite
happens.

• Buffer Dependency Check: (centralized): This unit
checks if there exists at least one VC at the input port
that wants to use the output port stored in the IO Priority
Buffer. If yes, the check probe is forwarded out of that
output port, else it is dropped.

After going through these 3 units, at the output mux
the following priority is enforced by the Msg Sel signal:
check probe > disable or enable > probe > flit10.

Static Bubble Routers. At a static bubble router, in

9It takes one-cycle to process/forward each message in the router, and
one-cycle to traverse the link.

10The switch allocator disables the arbitration for this output port if any
special message is received for this output port.

Table I: Static Bubble vs. Escape VC
Static Bubble Escape VC

Operating Mode Deadlock Deadlock Avoidance
Recovery or Recovery

Pre-Deadlock Minimal Minimal
Post-Deadlock Minimal Non-Minimal

Spanning Tree/Ring
Control FSM (Sec IV-C) Routing Table

Additonal Equation 1 n×m×5
Buffers in 21 in 64 core 320 in 64 core

n×m Mesh 89 in 256 core 1280 in 256 core
Area Overhead ∼0% 18%

addition to the above units we also add the FSM, counter, a
static bubble and a Turn Buffer, as shown in Fig. 7. A static
bubble is like any other VC.

Static Bubble vs. Escape VC. Escape VCs are a powerful
framework for deadlock-freedom, and Table I compares
Static Bubble against them qualitatively and quantitatively
in terms of cost. Performance comparisons are done later
in Section V. The deadlock resolution time for escape VCs
depends on the misrouting penalty through the tree root; for
SB it depends on the length of the deadlocked path, as the
disable and enable need to traverse it to resolve the deadlock.

Implementation. We implemented the SB microarchitec-
ture in DSENT [32] at 32nm and observed less than 0.5%
area overhead compared to a conventional 1-cycle mesh
router (where the buffers and crossbar dominate area), and
18% lower area than escape VCs. Moreover, since SB does
not require a deadlock-free spanning tree for its operation
unlike the deadlock avoidance schemes or escape VC (which
needs it for its escape path), we can reduce reconfiguration
cost significantly compared to prior works [4], [8].

V. EVALUATIONS

A. Simulation Methodology

State-space Exploration with Fault Model. For all
our simulations, we assume an underlying 8×8 mesh. We
develop two models, where we randomly inject faults in the
network and map them to link failures in one, and router
failures in the other, and remove these components from
the topology graph. Our fault model is in line with previous
works in the resiliency domain [14], [5], [7]. For simplicity,
we call these faults throughout this section, though they can
can also be viewed as power-gated link-drivers or routers.

For each fault number, since the state-space of possible
topologies is exponential, a full exploration is infeasible.
Instead, we increase the number of topologies till the average
value of the trend we wish to study (rate at which they
deadlock, average network latency, throughput, application
runtime, etc) stabilizes11.

A key observation that Fig. 2 and Fig. 3 show is that
at high number of faults/power-gated links or routers, the

11Because of the high symmetry of the mesh topology, many of the
generated irregular topologies gave similar results and the trend stabilized
within 100 topologies in most cases.



Table II: System Configuration
Network Configuration
Topology 8x8 Mesh
Routing Source Routing (Sec II-D)
Num VCs 3 Vnets, 4VCs per VNet per port
Latency 1-cycle router + 1-cycle link
Flit Size 128b
SB tDD 34
Fault Model Random [14], [5], [7] (links & routers)
Traffic (using gem5 [34] + Garnet [35])
Synthetic Uniform Random and Bit-Complement with

mix of 1-flit and 5-flit packets
Multi-threaded PARSEC [16] running on HyperTrans-

port [36] protocol
Heterogeneous Rodinia [17] traces

topologies become highly fragmented lacking cycles and
thus do not deadlock. At low number of faults/power-
gating, though, which is expected to be the common case, a
significant number of topologies can deadlock.

Routing Algorithms. As described in Section II-D, we
model a routing table at each NIC that populates the route in
each packet, across our baselines and Static Bubble, lever-
aging prior work on routing over irregular faulty NoCs [4],
[8], [5]. With uniform random traffic, if the destination is
not reachable (due to disconnected topologies), the packet
is simply dropped. With real application traffic (PARSEC2.0
and Rodinia), the application is mapped on cores that are part
of a connected sub-network, and only those topologies that
do not disconnect the Memory Controllers are considered.

B. Configuration and Baselines

We use the gem5 [34] full-system simulator with the
Garnet [35] network model for our cycle-accurate simula-
tion studies. Network energy and area is estimated using
DSENT [32]. We model 32nm and 2GHz. Table II lists the
system configuration.

We use the following two baselines across all our simu-
lations that reflect the state-of-the-art.

Deadlock Avoidance with Spanning Tree. We model
a deadlock avoidance scheme using an up-down routing
similar to state-of-the-art works in NoC resiliency [4], [5],
[8], [6] and power-gating [12]. We assume zero cycles to
reconfigure for spanning tree construction, though this cost
is in 1000s of cycles [4], [8]. All packets come embedded
with a deadlock-free route (Section II-D).

Deadlock Recovery with escape VCs. We model a dead-
lock recovery scheme, where upon detection of a deadlock,
packets move to an escape VC and use a deadlock-free
route within that [10], [9]. Packets inside regular VCs use
minimal routes set by the source (Section II-D) with 1-
cycle routers, while escape VCs use a per-router routing
table configured with a spanning tree. Again we assume zero
cycles to reconfigure for spanning tree reconfiguration.

C. Network Performance and Energy Sweep

We start with a performance sweep of the entire design-
space of irregular topologies with synthetic traffic.

Low-load latency. Fig. 8 plots the average latency benefit
that Static Bubble (SB) provides over the baselines at low-
loads for (a) uniform-random and (b) bit-complement traffic
patterns. Since deadlocks do not occur at this point, both
escape VC and SB show the same performance, providing
around 22% latency savings with uniform random and
15% with bit-complement traffic on average across all the
topologies, with low number of link and router faults. This
reiterates our motivation that restricting path diversity in
an already irregular topology that the baselines do is not
very robust. Beyond 53 link faults, the topologies become
highly disconnected with no cycles and very little path
diversity in the topology itself, so minimal routes show
similar performance to the spanning tree.

Throughput. Fig. 9 plots the average network saturation
throughput as a function of link and router faults. SB
provides up to 3.5 to 4X throughput benefit over a spanning
tree. This is due to higher path diversity that the tree limits.
We also observe a 1.2 - 1.3X higher throughput than escape
VCs. This is due to escape VCs having to reserve one VC
solely for deadlock recovery at all nodes, limiting throughput
at high loads, while SB reserves an extra VC only at a few
nodes. At around 21 router faults, the performance of all 3
designs is very similar. This is because there are very few
deadlock-prone topologies at this fault number. Beyond this,
the network becomes fragmented, and there are cycles within
each fragment which leads to performance improvements.

Energy. Fig. 10 plots the network energy using
DSENT [32] as routers are turned off. Across the design
space, we observe about 10% energy reduction compared to
spanning tree, and 20% compared to escape VC which are
modeling state-of-the-art power-gating NoC designs [12],
[10], [9]. In addition, we see 22% leakage energy improve-
ment at low router faults. SB can thus be used to increase the
static energy savings of existing works in NoC power-gating
domain. At high router faults, leakage becomes a larger part
of the overall energy as the topology becomes fragmented
and so the average hop count reduces, leading to a dip in
dynamic energy, but SB still provides 20% savings.

D. Deadlock Detection Threshold Sweep

Next, we study the impact of the Deadlock Detection
threshold (tDD), the only configurable parameter in our
design. Intuitively, a very low value of tDD will result in
a lot of probes being sent out while a very high value
may delay deadlock resolution. In practice, however, we
observed that at low (0.01 flits/node/cycle) and medium (0.1
flits/node/cycle) loads, even with a tDD of just 5-cycles, no
probes were sent out since a flit would leave within this
time. Fig. 11 sweeps tDD at high loads, when the network
is deadlock-prone (Fig. 3), for 10K cycles. The NoC has 20
router faults and the average values across all topologies are
plotted. A very low value of tDD results in over 4000 (0.4
per cycle) probes across the NoC. As tDD increases, there
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Figure 8: Avg and Max network latency improvements demonstrated by Static Bubble, normalized to Spanning Tree, across the
irregular topology space with uniform random traffic at low-loads.
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Figure 11: Deadlock Detection Threshold Sweep.
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Figure 12: Scatter Plot of Application Throughput with es-
cape VC and SB, normalized to Spanning Tree, for Rodinia
workloads, with increasing link and router faults.

is an exponential decline in the number of probes being sent
out and saturates to about 200 (0.02 per cycle). While more
probes steal bandwidth from flits, it turns out that probes
are only being sent when the network is truly deadlocked
in which case the links are idle. At this point the network
is saturated which is reflected by the extremely high packet
latency. Recall that the number of probes does not affect the
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Figure 13: (a) Application Runtime and (b) Network EDP for
PARSEC with 4 faults.

functional correctness of the design; it just affects the time
to detect deadlocks and link energy consumption. While we
did not see any noticeable difference in the average latency
of a flit as the threshold is swept since link traversal by
probes is orders of magnitude lower than by flits, a slight
improvement in packet latency is seen at low tDD as the
deadlocks get detected faster.

Fig. 11 also shows the link utilization of the message
classes as tDD is varied. Link utilization by probes falls from
5% when tDD is low to 2% at medium tDD to 1.5% at high
tDD. The other special messages have constant link utiliza-
tion (enable(0.45%), disable(0.45%), check probe(0.6%)) at
all values of tDD thus showing that these messages use
the links only in case of a deadlock and thus do not steal
bandwidth from flits which remain the dominant users of
the NoC (>93% utilization across all values of tDD).

E. Real Applications.
Fig. 12 plots the application throughput of Rodinia [17]

benchmarks as a function of link and router faults across the
topology space, normalized to the Spanning Tree. At low
faults, the system with SB is consistently higher performing
than both escapeVC, and Spanning Tree, by up to 2-4X. The
only exception is Hadoop which shows similar performance
with all systems due to high collective traffic which saturates
all the NoCs very early. At high link fault rates, BPlus and
SRAD show throughput improvements with SB, while the
performance of others drops. At 20 router faults, all designs
perform almost identically as very few connected topologies
to run Rodinia exist at this fault rate, and there is hardly any
path diversity that minimal routes can exploit. We observed
deadlock occurrence (and resolution) in Hadoop, BFS, and
SRAD for some instances of the topologies at low faults.



Fig. 13 runs a full-system 64-core simulation of PARSEC
with 4 link faults. Both escape VC and SB provide ∼15%
reduction in application runtime, on average, validating our
case for deadlock recovery solutions over Spanning Tree
solutions. Results with 32 router faults were very similar.
PARSEC workloads have very low network injection rates,
and hence no deadlocks were observed which is why SB and
escape VC have identical performance. The benefit of SB
over escape VC is visible in Fig. 13(b) where the network
EDP is plotted. SB has a 53% lower EDP than Spanning
Tree, and a 17% lower EDP than escape VC.

VI. CONCLUSION
Current solutions for deadlock freedom for irregular

topologies (that may occur due to NoC faults or power
gating) require expensive spanning tree constructions and
non-minimal routing over them. The alternative of using es-
cape VCs still requires such a tree for providing a deadlock-
free escape path. We perform a state space exploration and
conclude that while most irregular topologies are deadlock-
prone, the actual occurrence of deadlocks at runtime is rare.
We present a plug-and-play solution for deadlock recovery,
known as Static Bubble, that augments a set of routers in
a mesh with an extra buffer via a novel algorithm that
guarantees the existence of at least one static bubble in
any dependency cycle. We provide a low-cost mechanism
for deadlock recovery and demonstrate performance gains
and energy reduction over state-of-the-art solutions. Static
Bubble does not require any tree construction and can
augment current solutions in the space of heterogeneous
design, NoC resiliency and power-gating.
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