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ABSTRACT 
The celebrated 1965 prediction by Gordon Moore regarding exponential improvements in 
integrated circuit density is so widely known, and has proven so accurate, that it has been 
elevated to the status of a “law”.  Less appreciated is the fact that many areas of 
computation have benefited equally from progress in algorithms.  In this paper we 
compare and contrast the contributions to progress in signal processing capability of 
“hardware” (integrated circuits and computer architectures) and “software” (functionality 
and algorithms). While acknowledging the enormous impact that Moore’s Law growth in 
hardware performance has had on signal processing applications, we make the case that 
algorithm improvements, in the form of improved functionality and implementation, have 
contributed significantly to past progress as well. We discuss important differences in the 
ways that progress in the hardware and software realms contribute to signal processing 
capability, and describe how application developers tend to draw successively on each 
different domain of improvement as their product designs evolve over time. Finally, we 
argue that sustaining exponential growth in signal processing applications in the future 
depends more than ever on sustaining innovation in software and algorithm development.  

1 INTRODUCTION 
Digital signal processing (DSP) emerged as a recognized field of study with the 
publication of the first DSP textbook by Gold and Rader in 1969 [1].  It was in this same 
time period that Gordon Moore, then a pioneer of integrated circuit (IC) design at 
Fairchild Semiconductor, was asked during a keynote speech to comment on the likely 
course for this new technology.  Moore’s development team had completed a 32 
transistor IC in 1964 and a 64 transistor IC in 1965.  Based on this scant historical data, 
Moore conjectured that it should be possible to double the number of transistors, and 
therefore, in some sense, the IC performance every year [2].  In a 1965 paper he argued 
that the number of “components” per IC could double every year through at least 1975 
[3]. In 1975, with 10 years of experience in designing chips of exponentially increasing 
complexity, Moore amended his prediction to a doubling every two years [4]. By the late 
1970s the rate appeared to have stabilized at a doubling every 18 months.  It is this 
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variant that is perhaps most commonly recognized as Moore’s Law [5],[6]. It has stood 
the test of time, with exponential improvement in IC technology the rule for more than 40 
years.  

Even with these remarkable improvements in IC technology, many important 
applications for DSP would not be viable today without commensurate reductions in the 
computational complexity of foundational signal processing algorithms.  Many more 
capabilities would not exist but for the emergence of entirely new signal analysis and 
processing paradigms.  This paper examines the relative impact of improved IC 
technology and computing architectures, or more generally computing “hardware”, 
versus fast algorithms and new mathematical techniques (computing “software”) in 
advancing the capability of digital signal processing.  We describe the different ways in 
which progress in hardware and software tends to impact signal processing capability, 
and how application developers have historically drawn on these different types of 
progress at different points in product maturation.  The 40-year history of DSP hardware 
and algorithm development highlights the value of continued investment in signal 
processing algorithms, and also provides a perspective for conjecture regarding the future 
evolution of DSP technology.  

 

2 GETTING MORE FROM SIGNAL PROCESSING 
Signal processing is performed using signal processors; today, this generally means a 
digital machine, usually programmable.  The capability of a signal processor is 
determined by its “hardware” and “software”.  By “hardware” we mean the physical 
implementation, which includes both individual ICs and the system architecture.  
“Software” is the computational procedure, which includes both the mathematical 
functionality and the particular algorithm by which it is implemented.  For example, the 
discrete Fourier transform (DFT) is a particular mathematical function, a transformation 
of one data sequence into another with different and useful properties.  The fast Fourier 
transform (FFT) is a particular sequence of computations that implements the DFT 
efficiently.  Figure 1 illustrates this decomposition of a signal processor into IC devices 
(ICs) plus architecture, and functionality plus algorithms. 
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IC Devices Algorithms Functionality
 

Figure 1.  “Hardware” and “software” elements of a digital signal processor. 
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Continued research and technology development in signal processing are motivated by 
the ever-present demand to derive more information from signals.  “More” can mean at 
least three different things: 

• Faster: Derive more information per unit time; or 

• Cheaper: Derive information at a reduced cost in processor size, weight, power 
consumption, or dollars; or 

• Better: Derive higher quality information, for example, higher precision, finer 
resolution, higher signal-to-noise ratio, or reduced compression losses. 

“Faster” can be achieved in two ways.  A faster hardware approach may simply execute 
algorithms on a machine capable of more operations per second.  This strategy is a direct 
beneficiary of denser, faster ICs and of architectural innovations such as multiple 
instruction execution techniques, memory hierarchies and, in larger-scale applications, 
multiprocessor architectures and communication fabrics. A software approach may adopt 
a new algorithm that implements a mathematical function in fewer operations (and with 
different precision, memory requirements, and quantization noise properties). Even the 
most basic DSP functions provide ample opportunity for diverse implementations.  For 
example, convolution with a finite-impulse response (FIR) filter impulse response can be 
implemented with a single straightforward convolution sum, frequency domain “fast 
convolution”, or overlap-add or overlap-save methods (which in turn can be implemented 
in the time or frequency domain) [7].  The variation in arithmetic operation count for 
alternate implementations can easily be on the order of 5:1. 

Improvements in signal processing hardware and software are not necessarily 
independent.  It is increasingly the case that algorithms must be explicitly matched to the 
architecture of a multiprocessor system, and even to the internal architecture of 
microprocessors, in order to achieve the highest speeds.  Conversely, multiprocessor 
architectures, especially communication fabric topologies, are sometimes designed to 
maximize the execution speed of particular algorithms they will host.  For example, 
hypercube interconnection architectures are ideal for computing FFTs, while various 
block-cyclic data distributions are well-matched to many vector-matrix computations.  
Matching of architectures and algorithms does not reduce arithmetic operation counts, but 
it can significantly reduce the overhead requirements of memory access and data 
communication. 

At first glance, more efficient (“cheaper”) signal processing appears to depend primarily 
on improvements in hardware technology.  Improved semiconductor technology allows 
the same operations to be implemented in less space, less weight, with lower power 
consumption, or at lower dollar cost.  However, software also contributes to more 
efficient implementations.  Conventional fast algorithms reduce operation counts and 
thus power consumption, but it is possible to go far beyond this to use a variety of 
coordinated software and hardware techniques to reduce power consumption [8]. 

As with “faster”, “better” may achieved by software and, in some cases, hardware 
approaches.  Improved devices may enable sampling with more bits of resolution and 
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thus reduced quantization noise at a given sampling rate, or may compute an algorithm in 
floating-point instead of fixed-point arithmetic in real time.  Software improvements 
come from new algorithms that obtain higher quality results from the same data as older, 
established procedures.  A good example is the introduction of model-based spectrum 
estimation techniques such as autoregressive moving average (ARMA), the multiple 
signal classification (MUSIC) algorithm, or eigenspectrum techniques.  Compared to 
classical Fourier methods, these techniques achieve higher spectral resolution from 
limited data; some allow enforcement of a priori constraints.  

An important subset of “better”, perhaps deserving of a separate category, is methods that 
extract new or different types of information from signals of interest.  As technology 
evolves, entirely new domains of application are sometimes opened, or entirely new ways 
of solving existing problems become feasible. In this regard, “better” includes the 
discovery and application of entirely new functionality; for example, a novel function or 
transformation on the data that reveals information previously unobtainable by means of 
existing functions and methods. Examples of such “new math” for signal processing 
include wavelet techniques for nonstationary signal analysis, the Viterbi algorithm for 
signal coding, and the emerging field of nonlinear signal processing.  Whereas “faster” 
and “better” come from progress in hardware and in the algorithm aspect of software, 
entirely “different” information is obtained via innovations in the functionality aspect of 
software. 

 

3 GROWTH IN SIGNAL PROCESSING PERFORMANCE 
3.1 THE CONTRIBUTION OF HARDWARE 

The capability of the physical machine implementation (“hardware”) of a signal 
processor is affected by the performance of the individual ICs that comprise the 
processor, memory, and communication elements, as well as the architecture that defines 
the overall organization of these elements.  In this section we consider the rates of 
progress in ICs and computer systems. 

3.1.1 Moore’s Law 

As originally stated, Moore’s Law addressed the number of “components”, primarily 
transistors, on an integrated circuit [3]; the density or performance per unit cost was not 
addressed directly.  As understood today, Moore’s Law predicts a doubling in circuit 
density, and concomitant improvement in performance, about every 1.5 to 2 years.  This 
is equivalent to 1.5 to 2 orders of magnitude every decade, a time scale more appropriate 
to the long view taken in this paper.  Figure 2 shows that the density of Intel 
microprocessors, measured in transistors per chip, has closely followed this prediction for 
30 years.  The average growth rate of the data in Figure 2 is 1.5 orders of magnitude per 
decade.  The related metric of clock rate has also followed an exponential growth curve, 
albeit a slower one; since 1978, the clock rate of the same Intel microprocessors has 
increased at an average rate of one order of magnitude per decade.  
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Figure 2.  Growth in IC density as evidenced in Intel microprocessors.  The solid line corresponds to an 

overall growth rate of 1.5 orders of magnitude per decade.  Data from [9]. 

Signal processing practitioners are concerned with computational performance.    
Because traditional core DSP algorithms are dominated by sum-of-products calculations, 
practitioners have long focused on the number of mathematical operations per second as 
a simple but meaningful indicator of processor performance.  Since the 1982 introduction 
of the Texas Instruments TMS32010 DSP, it became common for DSP microprocessors 
to incorporate dedicated units to perform multiplications in a single cycle, so that both 
additions and multiplications became of equal importance in evaluating processor speed 
for DSP.  This in turn made IC clock rate a good indicator of arithmetic performance for 
a given algorithm.  Thus, Moore’s Law growth in IC density, and the concomitant 
increase in clock rates, has been a useful proxy for growth in DSP computational 
capability, at least over the last 20 years. 

3.1.2 IC Minimum Feature Size Scaling 

While Moore’s Law has held sway for some 40 years, the continuing shrinkage of feature 
sizes at its root has a number of consequences that will eventually limit further progress 
in CMOS-based devices.  Though development of finer-resolution mask making 
equipment remains a major technical challenge, thermal and economic considerations 
may arise as limiting factors sooner.  For example, from 1970 to 2003, wafer exposure 
systems have risen in cost from about $20,000 to over $10,000,000, while wafer 
fabrication facility costs have risen from less than ten million dollars to over two billion 
dollars [10].  Productivity has risen even faster, so that facility cost per unit output has 
dropped rapidly.  Nonetheless, the absolute cost of a new wafer fabrication facility is 
reaching a scale that may be beyond the reach of even the largest semiconductor 
companies, requiring the formation of consortia or even of industry-government 
partnerships. 
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However, power and its attendant thermal considerations may pose the most imminent 
threat to Moore’s Law.  Transistor density scales as ∆−2, where ∆ is the minimum feature 
size.  To a first approximation, the underlying trends in power, power density, clock 
frequency, and energy per instruction can also be expressed in terms of minimum feature 
size..  Table 1 summarizes the relationships, assuming constant die area and supply 
voltage. For example, the efficiency of microprocessors in terms of energy per instruction 
(nJ/instruction, equivalent to power per unit throughput in mW/MIPS) scales in 
proportion to ∆.  This trend, sometimes referred to as “Gene’s Law” after Gene Frantz of 
Texas Instruments, is illustrated in Figure 3, which shows that the power efficiency of a 
variety of microprocessors and DSP chips has improved at a rate of about 1.7 orders of 
magnitude per decade. 

 

Table 1.  Impact of Feature Size ∆ on Microprocessor Metrics 

Performance 
 Metric 

Geometrical 
Dependency 

Clock Frequency 1/∆ 

Transistor Power ∆ 

Transistor Density 1/∆2 

Total Device Power 1/∆ 

Power Density 1/∆ 

Energy per Instruction ∆2 
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Figure 3.  Energy per instruction for various processors.  Data from [11],[12],[13]. 
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Unfortunately, as indicated in Table 1, total power for a given die size increases in 
inverse proportion to feature size.  The power consumed by Intel microprocessors when 
running a high-power application has grown about 24% per year, or just under one order 
of magnitude per decade [14].  Gunther et al show that the cost of cooling these devices 
rises rapidly when the power dissipation approaches 70 W per chip, primarily because 
heat sinks must be discarded in favor or more elaborate heat pipes or other technologies.  
Thus, there is a major cost incentive to keep power dissipation below 70 W per chip for 
desktop-class machines.  The breakpoint would be much lower for small embedded 
processors. 

Figure 4 shows a similar growth in power density and compares it to the power densities 
for a few non-electronic reference systems.  Zhirnov et al argue in [15] that fundamental 
limits on the ability to remove heat as the power density increases will soon put an end to 
the simultaneous scaling of both clock speed and density, instead forcing them to be 
traded off: higher densities will require lower speeds to limit the power density; higher 
speeds will require lower densities.  

 
Figure 4.  Power density of Intel microprocessor family Data from [14],[16].. 

 

3.1.3 Architecture 

The exponential improvement in processor speed, with its attendant pressure on system 
communication and memory access, has now made memory hierarchy, parallel 
architecture, and communication fabrics equally important cointributors to computing 
system performance.  Historically, computing system performance has also improved 
exponentially, though not always at as high a rate as microprocessors.  For example, in a 
1993 book, Edward Yourdon claims a 20 to 30% improvement per year in “hardware 
technology”, equivalent to 0.8 to 1.1 orders of magnitude per decade [17].  Patterson and 
Hennessy [18] describe a rate of computing system performance improvement of 1.1 
orders of magnitude per decade in the 1970s, increasing to about 1.3 as the 
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microprocessor revolution matured. In a 1984 column [19], Jon Bentley cites work 
showing that from 1945 to 1985, supercomputing hardware increased in speed by about 
factor of about 6x105, or just over a more optimistic 1.4 orders of magnitude per decade. 
All of these examples are below the Moore’s Law rate of growth for ICs alone.. 

Recently, progress in computationally efficient architectures at both the microprocessor 
and system levels has elliminated this lag.  Continuing in [18], Patterson and Hennessy 
show the rate of improvement at the microprocessor level growing to 1.8 orders of 
magnitude per decade in the 1980s with the introduction of reduced instruction set 
(RISC) architectures.  Numerous other sources and commentators also show that the 
growth in overall computing capacity now tracks, or even exceeds, Moore’s Law.  Sun 
Microsystems co-founder Bill Joy stated in 2001 that, starting in 1987, the rate of 
microprocessor performance improvement had increased from 35% per year in its first 15 
years to about 55% per year [20], equivalent to a doubling every 18 months and 1.9 
orders of magnitude per decade.  This increase in the rate of exponential speedup, is 
attributable more to the effects of architectural change in the microprocessor and memory 
hierarchies than to the semiconductor process improvements that drive Moore’s Law. 

Another measure of system performance is the Top 500 supercomputer list [21], based on 
speed in computing the LINPACK floating point linear algebra benchmarks.  Figure 5 
shows performance improvement rates for supercomputers over a decade ending in 2002 
of 2.9 orders of magnitude per decade for the fastest computer at a given time (denoted 
by the curve labeled N=1), to 2.5 orders of magnitude per decade for the 100th-fastest 
machine (N=100), to 2.8 (N=500) orders of magnitude per decade. 
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Figure 5. Performance growth of the 1st (N=1), 100th (N=100), and 500th (N=500) place computer in the 

Top500 supercomputer list. Data from [21]. 
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3.2 THE CONTRIBUTIONS OF SOFTWARE 

“Software” here includes both the functionality to be implemented (the mathematics of 
the problem formulation), and the specific computational procedure to be followed (the 
algorithm).  The choice of algorithms affects not only speed but also quality issues such 
as quantization noise and resolution, and can even affect other hardware metrics such as 
power consumption.  Here, we focus primarily on speed.  We can expect that a signal 
processing algorithm’s execution time is approximately proportional to its arithmetic 
operation count.  Thus, operation counts are a simple proxy for algorithm speed. 

3.2.1 Fast Algorithms 

Have algorithm improvements kept pace with hardware improvements in contributing to 
the increases in computing and signal processing capability?  To answer this question, we 
need to observe the performance of selected signal processing applications over a long 
period of time.  Bentley [19] documents a scientific computing example, the solution of 
3-D elliptic partial differential equations.  He shows that from 1945 to 1985, operation 
counts for problems computed on an NxNxN grid were reduced by a typical factor of 
N4/60 through a succession of algorithmic improvements. For a broadly representative 
problem size of N = 64, the improvement is a factor of about 3x105, just under 1.4 orders 
of magnitude per decade.  Thus, the impact of algorithmic improvements on the time 
required for this class of scientific calculations over this period was similar to that of 
computing hardware improvements. Indeed, Rice ([22], p. 343) states that “… the 
progress made through better methods from 1945 to 1978 exceeds the progress made 
through faster computers”. 

In a famous scientific computing example, IBM’s “Deep Blue” supercomputer beat world 
champion Garry Kasparov in a chess competition in May 1997. Deep Blue was a special 
purpose machine with a peak processing speed of up to 40 trillion special-purpose 
operations per second and a design carefully matched to the algorithms to be used.  
Moravec [23] claims it to be equivalent to a general-purpose processor having throughput 
on the order of 1-3 trillion instructions per second (TIPS).  Less than 6 years later, in 
February 2003, Kasparov played the then-champion “Deep Junior” computer chess 
program to a draw.  The host computer, based on four 1.9 GHz Pentium 4 processors, 
was capable of a peak throughput of approximately 15 billion instructions per second 
(GIPS). 

If we consider the Deep Blue machine to be a 1.5 TIPS machine for arithmetic 
convenience, then the power of the machine needed to achieve the same functional result, 
namely playing chess on the level of Garry Kasparov, decreased by a factor of 100 in six 
years.  Equivalently, the power of the algorithms used increased by the same factor of 
100 in six years, corresponding to a blistering rate of 2.154x per year, or 3.33 orders of 
magnitude per decade.  As we have seen, the rate of increase in microprocessor clock 
rates is about one order of magnitude per decade.  To achieve this 100x speedup from 
clock rate alone would have therefore required 20 years.  Thus, the algorithm 
improvements accelerated the progress from the Deep Blue machine to the Deep Junior 
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machine by 14 years.  Even if we use the more broadly representative hardware 
improvement rate of 1.5 orders of magnitude per decade, the algorithmic improvements 
are responsible for a 7.3-year acceleration of progress. 

There are many other examples of exponential growth in capability.  The downstream 
speeds of common dial-up modems provides a more modest example of exponential 
growth in signal processing capability for a particular function sustained over a 
significant period of time.  These improvements were primarily algorithm-driven, taking 
advantage of advances in modulation and coding schemes.  For example, binary phase-
shift keying (BPSK) gave way to quadrature PSK (QPSK) or quadrature amplitude 
modulation (QAM), resulting in rates increasing from 300 bps to 1200 bps.  The 
introduction of trellis coding and a 16-point constellation increased rates to 9600 bps; a 
128-point constellation increased rates further to 14.4 kbps.  Treichler, Larimer, and 
Johnson [24] show that data rates over unconditioned lines increased from 2400 bits per 
second (bps) to 56000 bps in approximately 13 years, equivalent to an average of 23% 
per year, or just over 1 order of magnitude per decade.  Eldering, Sylla, and Eisenach [25] 
provide a similar review based more on the release dates of international modem 
standards. If we start with the 2400 bps modem, their data gives a growth rate of 1.2 
orders of magnitude per decade, somewhat more consistent with the Treichler et al data. 

Complete signal processing applications are generally composed of a number of 
component algorithms.  The speedups discussed above are a composite of speedups of 
varying degree in the components of the overall application.  It is therefore useful to look 
in more detail at improvements in specific component algorithms. 

If there is a single canonical signal processing algorithm benchmark, it is the 1K (N = 
1,024) complex FFT.  Direct implementation of the DFT sum requires N2 complex 
multiplications, or just over 10

6
 for N = 1024.  The original radix-2 Cooley-Tukey 

algorithm [26], published the same year (1965) as Moore’s Law, reduces this to 
(N/2)log2N, or 5120 for N = 1024.  This reduction by a factor of about 200 is equivalent 
to 15 years of hardware improvement at 1.5 orders of magnitude per decade!  That is, 
publication of the FFT made it possible to compute a 1024-point DFT in an amount of 
time that would not have been achievable for another 15 years if one relied only on 
Moore’s Law speedups of computer hardware.  As shown in Figure 6, for longer FFTs 
even more years of hardware improvement are needed to effect the same reduction in 
computation time that the FFT affords over a direct sum-of-products DFT. 

The FFT algorithm is not unique in achieving an exponential reduction in computational 
complexity for a core function.  In 2000, the journal Computing in Science and 
Engineering published a special issue addressing “The Top 10 Algorithms” of the 20th 
century [27].  Two more outstanding examples of fundamental improvements in 
computation complexity drawn from this list are the Quicksort algorithm and the fast 
multipole algorithm.  Quicksort reduces the average complexity of the problem of sorting 
N items into numerical order from O(N2) to O(NlogN), the same O(N/logN) gain provided 
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by the FFT over the DFT.5  The fast multipole algorithm is even more powerful, reducing 
the complexity of N-body simulations from O(N2) to O(N). 
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Figure 6.  Years of Moore’s Law improvement required to equal FFT computational savings relative to a 
sum-of-products DFT.  Assumes hardware speedup of 1.5 orders of magnitude per decade (doubling every 

two years). 

 

Another example of order reduction by a full factor of N is the solution of the 
autocorrelation normal equations used in parametric modeling.  The classical algorithm 
for solution of the (N+1) equations resulting from an order N model is Gaussian 
elimination, which requires approximately N3/3 multiplications.  The first developers of 
linear prediction used the Cholesky method to solve the equations with half as many 
computations.  Levinson’s recursion, published in 1947, cut the number of 
multiplications to N2+2N [28].  This is a major reduction in order from O(N3) to O(N2) is 
greater than that obtained for DFTs by the FFT algorithm. 

Nonetheless, the speedups in solving the normal equations have not had as dramatic an 
impact as has the discovery of the FFT.  The reason is that the typical applications of 
linear prediction in signal processing involve relatively small order problems, limiting the 
gain in absolute terms.  For example, linear prediction of speech typically involves an 
order of N = 8 to 12.  For N = 10, the reduction from Gaussian elimination to the 
Levinson algorithm is a factor of 2.8; for N = 15, it rises to 4.4.  At 1.5 orders of 

                                                 
5 The notation O(N2) means “order of N2”, i.e. proportional to N2. 
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magnitude per decade, these improvements are comparable to 3 and 4.4 years of 
hardware improvement, respectively.   

Reduced computational complexity allows us to solve a given problem more quickly, or 
to solve a larger-order problem in the same amount of time.  Such speedups are not 
always the goal of algorithm improvements.  The exploding use of portable audio 
devices, laptop computers, cellular telephones and personal digital assistants (PDAs) has 
drastically increased the importance of power efficiency.  Power efficiency is being 
addressed at every level, from new sources such as micro fuel cells to low power circuit 
design in semiconductors, and algorithms can contribute here as well [8].  Classical 
algorithm speedups have a direct payoff in energy efficiency because they reduce the 
number of operations required to complete a computation, allowing the use of a slower or 
less dense processor.  Parallelization of algorithms is another approach to architecture 
and algorithm-based power reduction.  Parallelization enables a computation to be done 
with multiple, slower processing units instead of one very fast one.  The use of slower 
units allows reductions in chip supply voltage and, since power consumption is 
proportional to the square of voltage, the parallel approach will often consume less total 
power.  Approximation is an algorithmic approach that trades off accuracy for efficiency.  
An obvious way to do this is by using fixed- instead of floating-point arithmetic.  More 
sophisticated methods exist, for example the use incremental refinement algorithms that 
allow computations to be stopped early, or of lossy compression algorithms to reduce the 
amount of data that must be transmitted, processed, and stored. 

3.2.2 Manifestations of Hardware vs. Algorithm Improvements 

Considered in total, the evidence cited in the preceding sections suggest that a rate of 
increase in the performance of ICs and computer systems of 1.5 orders of magnitude per 
decade can be taken as representative. Furthermore, speedups in computer hardware have 
proven relatively frequent and predictable, having persisted at this rate for 40 years now, 
and may hold for at least another decade.  In contrast, speedups in algorithms are usually 
manifested as one fundamental breakthrough such as the basic Cooley-Tukey algorithm, 
reducing the complexity of the computation as a function of the problem order (e.g., from 
O(N2) to O(NlogN), followed by a consolidation phase featuring a number of lesser 
improvements by factors of two or more.  The example of the FFT shows that major 
improvements in algorithms can produce, in effect, instantaneous progress equivalent to a 
decade or more of improvement in signal processing hardware performance, while even 
lesser algorithm innovations (factors of 2) equate to a three-year advancement. 

It is important to recognize a fundamental difference between algorithm and hardware 
improvement.  To first order, improvements in hardware speed translate directly to 
reductions in computational time, regardless of the algorithm.  The benefits of faster 
hardware are immediately available to almost all algorithms, and the algorithm speedup 
is manifested directly in terms of reduced time for execution.  In contrast, a particular 
algorithm innovation benefits only those applications that use that class of algorithms, 
and the speedup is usually a function of the dimension or order of the problem.  While 
Bentley’s data suggest that algorithm advances have occurred frequently enough to keep 
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pace with hardware progress over the last 40 years, the longer Moore’s Law persists, the 
more difficult it becomes for algorithm innovations to maintain parity with hardware 
speedups for a fixed problem order.  Consider again the DFT example.  While the 
development of a 1024 point radix-2 FFT pushed processing throughput ahead by a one-
time leap of 15 years, if the dimensionality of the problem (in this example, the FFT size) 
does not change, continuing savings from algorithm improvements will be limited to 
more modest gains from such techniques as higher radices or algorithms matched to 
particular architectures.  In contrast, faster microprocessors benefit both the DFT and 
FFT algorithms in equal proportion, and continue to do so at a predictable rate so that 
over time, hardware speedup will account for an increasing percentage of the cumulative 
reductions in computational time. 

Furthermore, the impact of reductions in algorithm complexity is blunted when other 
processing that is not amenable to fast algorithms is considered.  For instance, if a 1K 
DFT computation accounts for 80% of the total runtime of an application, then the 200x 
improvement in the DFT occasioned by using the FFT will reduce the overall runtime by 
a factor of 4.9x, while if the DFT was only 20% of the original computation, the 
improvement is only a factor of 1.25x.  In comparison, a speedup in individual processors 
(especially if balanced with improved memory and communication) benefits the entire 
application. 

One way to summarize the complementary nature of speedups in hardware versus 
algorithms is to note that hardware speed increases exponentially and predictably as a 
function of time.  As long as Moore’s Law remains in effect, we can count on the fact 
that computationally complex algorithms not currently realizable in real time will 
eventually become realizable, and we can even predict approximately when!  In contrast, 
while reduced complexity algorithms are discovered unpredictably in time, they increase 
execution speed exponentially and predictably as a function of problem dimension or 
order.  Therefore, discovery of a fast algorithm acts in effect like the discovery of a 
“worm-hole” in time evolution of an application, with the “time-compression” benefit of 
the worm-hole increasing in proportion to problem order. The benefit is always 
instantaneous and sometimes startling, allowing real-time implementation of high-order 
problems long before they would be enabled by hardware improvements.   

These observations also suggest the reason that Moore’s Law has become so widely 
known, even reaching the consciousness of the general public, while the contributions of 
algorithms to computing and signal processing capability seem to be less universally 
known or appreciated.  The increase in hardware speed benefits all computing, from the 
most obscure scientific applications to the most common household PCs, and all 
problems from the very large to the very small, in roughly equal measure.  The invention 
of a fast algorithm benefits only those users whose applications rely heavily on that 
algorithm, and even then, provides the most benefit to the highest order problems. 

3.2.3 New Functionality 

None of these considerations of computing speed address the most fundamental payoff of 
algorithm research: the development of entirely new capabilities resulting from the 
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application of new concepts and mathematics, the “functionality” component of 
“software”.  Improvements in hardware speed enable application performance 
improvements by supporting more of the existing functionality within a given amount of 
time, space, power, or other resource.  In contrast, breakthroughs in functionality add 
entirely new tools to the signal processing toolbox. 

Consider the example of speech recognition, a capability now available in shrink-wrap 
software; versions of it are used every day in such mass public applications as airline and 
banking telephone-based information systems.  It is unlikely that speech recognition 
would have ever reached the desktop, no matter how powerful the computer, had it relied 
on the vocoder or pattern recognition concepts of the 1960s. Rather, its success was 
dependent upon adopting new approaches based on parametric modeling and hidden 
Markov models.  The migration of world-class computer chess from special-purpose 
supercomputers to everyday desktop machines was made possible by a fundamental 
change in algorithmic strategy, abandoning brute-force exhaustive generation of all 
possible sequences of moves in favor of a less comprehensive but more sophisticated 
evaluation of potential moves.  Continued research in both functionality and algorithms is 
critical because of their potential to produce sudden, large gains in computational 
capability and also to enable fundamental new capabilities not achievable through 
increased speed alone. 

The impetus for entirely new algorithms comes about in at least two ways.  The first, 
similar to the speech recognition application discussed above, is the response of 
researchers to the realization that the performance shortfalls of an existing algorithm suite 
are not due to speed limitations, but are fundamental functionality shortcomings.  The 
second is the development of new application demands that open up entire new fronts of 
research.  Development of the Internet and cellular networks vastly increased the demand 
for progress in data compression and other aspects of telecommunications, emphasizing 
implementations that are efficient in the use of computation, memory, and power. 

 

4 MATURATION CYCLES IN APPLICATION IMPLEMENTATION 
The implementation of a signal processing capability typically evolves and matures in a 
manner that draws at different times on the different mechanisms for achieving “more”: 
ICs and architectures, functionality and algorithms.  Early development of a new 
application idea is typically focused on proof of concept (better or different) rather than 
faster or cheaper. The developers are primarily concerned with finding a set of algorithms 
that work reliably to perform the desired task adequately.  At this stage, the concern is 
with identifying and defining functionality, the “math” of the problem that will make the 
new application possible.  Standard available software tools are used on commodity 
laboratory computing platforms, often without much concern (yet) for real-time 
performance.  Thus, the initial implementations of a new capability rely on new 
functionality to achieve progress in signal processing. 

Once it is shown that a new capability is possible and useful, the developmental emphasis 
often turns to improving the implementation, where improvements might include 
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increased speed; reduced size, weight, or power; or reduced cost.  This drive for better 
implementations brings both hardware and algorithms into play.   

Any improvements achieved in algorithm efficiency are of the same fundamental value as 
equivalent improvements in hardware speed; but whether such improvements are 
available depends on the functionality of the application.  For example, it seems unlikely 
that further substantial reductions in the operation counts of algorithms for computing 
DFTs are likely.  Thus, if the new application relies heavily on the DFT, it is not a good 
candidate for major algorithmic efficiency improvements over current practice.  While 
careful attention to algorithmic details may offer significant savings of factors of 2 and 3 
over the original prototypes, order-of-magnitude improvements will come only from 
improvements in hardware performance.  On the other hand, if the new functionality 
takes advantage of mathematical approaches for which good fast algorithms are not yet 
known, the application can potentially benefit from both hardware performance 
improvements and from algorithm efficiency breakthroughs.  Even if this is not the case, 
if the functionality is compatible with cache-savvy and parallel implementations, 
opportunities exist for obtaining speedups through parallel algorithms that, while not 
reducing fundamental operation counts, do match the problem architecture to the 
processor architecture in ways that significantly improve efficiency.  An example is the 
FFTW library [29], which optimizes smaller components of the FFT algorithm to the 
cache structures of particular microprocessors used in each pipeline stage. 

However, there will always come a day when all of the efficiencies that can be wrung out 
of the mathematics of an application have been realized.  When that day comes, only 
hardware speedups will provide further improvements in the implementation of the 
application.  If these are too slow to come, then the application must be improved by a 
fundamental shift to a new way of achieving the same end, i.e. to new math.  For 
instance, no further improvements in conventional dial-up modem speeds have occurred 
since 1999; instead, progress has been achieved by a shift to a new telecommunication 
loop architecture, digital subscriber line (DSL).  Such a paradigm shift then enables a 
new cycle of algorithm improvements to accompany the steady march of semiconductor 
improvements.  This process of application development and evolution is illustrated in 
Figure 7.  A new application concept is demonstrated in an initial proof-of-concept 
realization using a particular algorithmic approach and hardware design.  Multiple cycles 
of hardware and algorithm improvements result in a series of faster, better, and cheaper 
implementations.  When algorithmic improvements to the basic mathematical 
functionality are exhausted, Moore’s Law continues to afford improvements in 
performance.  However, at some point the drive for “more” will be stopped by 
fundamental limitations of the functional approach.  At this point, a change to a different 
approach based on new math and physics is required, enabling new cycles of hardware 
and software improvements. 
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Figure 7. Notional illustration of the initial development and evolution of a signal processing application. 

As another example, early vocoders, as they would be implemented today, are essentially 
filterbank technologies and as such could take full advantage of improvements in DFT 
algorithms and semiconductor technology.  However, building ever faster and more 
compact vocoders would never achieve the improvements in speech coding and 
generation occasioned by the shift to predictive modeling, a fundamentally different 
representation of the signal.  The predictive approach shifted the emphasis away from 
DFTs and onto matrix algorithms for the solution of the normal equations.  This in turn 
brought opportunities for new algorithmic efficiencies through the Cholesky, Levinson, 
and Schur algorithms discussed earlier. 

Progress in signal processing capability is not always in the direction of faster execution 
times.  In many cases, the extra capability provided by faster hardware or algorithms is 
used not to make a given functionality run more quickly, but to allow the designer to 
implement a more complicated function in the same amount of time. That is, so long as 
real-time deadlines are met, functionality expands to occupy the processing power 
available.  An example is the introduction of digital I/Q (in-phase and quadrature) 
filtering in coherent communication and radar receivers.  This technology replaced 
analog mixing and filtering with digital techniques requiring a great deal of high speed 
digital filtering.  In exchange, the receiver designer achieves reduced I/Q channel 
mismatches, a major error source.  This form of progress is simply an example of 
choosing “better” over “faster”. 

 

5 INVESTMENTS IN SIGNAL PROCESSING PROGRESS 
Computing in general, and signal processing in particular, have both benefited from, and 
been driven by, the forty-year reign of Moore’s Law.  In this paper, we have argued that 
signal processing applications have also benefited significantly from progress in 
algorithms, and that many applications could not have succeeded without the benefit of 
new mathematical concepts and reduced-complexity algorithms, no matter how fast the 
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hardware.  We maintain that the contributions of hardware and algorithms over time have 
been, in a broad sense, comparable.  An interesting question is what the cost has been to 
achieve the improvements in hardware and algorithm performance over the past 40 years.  
While it is beyond both the scope of this article and the capability of the authors to 
accurately estimate the investments it took to get to our present state, we can conjecture 
regarding what it will take to move ahead at the same rate. 

The capital cost of semiconductor fabrication plants has risen from about $6 million in 
1970 to $2 billion for next generation facilities currently coming on line [5], [10], [30]. 
The construction of these facilities is an unavoidable cost of striving to stay on the 
Moore’s Law curve for semiconductor improvements.  Is a similar investment required to 
maintain the historically observed rate of improvement in algorithms?  We conjecture 
that the investment to sustain algorithm innovation has been, and will remain, much less. 

To provide at least anecdotal support for this conjecture, consider that the median salary 
is 2003 for a full-time academic senior researcher in signal processing algorithm and 
software techniques is approximately $100,000, or $120,000 for a similar researcher in 
the defense industry [31].  Including overhead costs, the total cost to support our 
researcher might be up to $300,000 per year.  If the researcher is a professor, he or she 
might well be assisted by several graduate students; if employed in an industrial firm, by 
one or two junior researchers.  We can postulate that for $600,000 per year we might, on 
average, be able to support a group of 4 researchers, making the average cost per 
researcher about $150,000 per year. $2 billion will support 13,000 researchers for one 
year at this rate!  Continuing in this vein, the Semiconductor Industry Association (SIA) 
reports that combined capital and R&D investments in the semiconductor industry in the 
year 2001 alone totaled $31.3 billion [32]; and this is for the U.S. industry only.  At 
$150,000 per year, a matching investment in algorithm researcher would support over 
200,000 researchers and students.  Furthermore, the cost of investing in algorithm 
research does not increase at the exponential rate observed for semiconductor fabrication 
facilities, so that as time goes on, algorithm investments become more cost effective 
relative to investments in hardware technology. 

Continued exponential improvement in DSP chip performance is wholly dependent upon 
smaller-featured devices fabricated in the new semiconductor fabrication facilities.  
However, the return on the enormous investment in these facilities is determined not by 
the DSP market, but by the much larger markets for memory chips, general purpose 
microprocessors, microcontrollers, and all the many other semiconductor devices that 
pervade the modern world.  Because of this wider impact of semiconductor investments, 
we would be foolish indeed to suggest that government and industry should be making 
investments in DSP algorithm development equal to those made in device development 
and fabrication.7 Yet we perceive quite the opposite that, relative to historical funding 
profiles, support for fundamental research in signal processing algorithms and 
mathematics is losing ground relative to investment in hardware technology.  During the 

                                                 
7 If, however, they should choose to do so, please contact the authors for instructions on where to send the 
check. 
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same time that we have seen investments in computer hardware rise to $220B annually in 
1999, we have also witnessed the disintegration of some of the most distinguished 
commercial signal processing R&D organizations, as well as a shift in both civilian and 
military R&D from fundamental research to near-term products and demonstration 
systems, respectively.  Because mathematical functionality and algorithm innovations 
have each provided a major share of the total progress in signal processing capability, it is 
reasonable to ask how much support should go toward research in DSP algorithms and 
functionality so that we can maintain our total rate of progress. 

It only takes one person with inspired insight to develop a new technique that can 
improve performance by an order of magnitude.  Since we can’t know who that person is 
in advance, we can seek to improve our odds for a breakthrough by investing in many 
research groups.  At the end of 2001, there were 18,487 members of the IEEE Signal 
Processing Society [33].  This may be only a small fraction of practicing signal 
processing engineers, but it is also true that only a small portion of the practicing signal 
processing engineers are likely to be involved in research leading to new algorithms.  To 
focus on DSP engineers active in research, consider the IEEE International Conference 
on Acoustics, Speech, and Signal Processing (ICASSP).  The premier digital signal 
processing conference focused on new research, ICASSP attracts as many as 2,000 
attendees, though surely many more researchers and students would like to attend.  
Considering these two figures, we can conjecture that the active DSP research 
community, at least in the U.S., might number between perhaps 5,000 and 20,000 
persons. issuesIt therefore appears likely that the funding needed to support the algorithm 
development community, and even to advance its rate of progress, is 10% or less of that 
invested in semiconductor R&D and capital investment, and just over 1% of the total 
computer hardware investment.  Considering what it has yielded over the years, the 
algorithm development side of signal processing progress is a bargain! 

 

6 FUTURE EVOLUTIONARY PATHS FOR DSP 
How will progress in signal processing capability be sustained in the future?  Historically, 
IC design and fabrication on one hand, and mathematics and new functionality on the 
other, have been largely independent endeavors.  In many cases, processor architecture 
and algorithms are also developed independently. However, as researchers and 
developers strive for greater efficiency, architectures and algorithms are becoming 
inextricably intertwined, defining a new middle ground that makes hardware and 
software increasingly appear as a continuum as illustrated in the revised version of Figure 
1, shown in Figure 8.  Just as over time additions and multiplications came to have equal 
importance in evaluating DSP microprocessor performance, now cache hierarchies, 
memory access time, and data communication latencies and rates are becoming equally 
significant determinants of system speed.  The increasing impact of these architectural 
features and thermal considerations upon the efficient use of modern processors is driving 
computer design increasingly to parallel multiprocessor systems, in some cases involving 
hundreds or even thousands of processors.  This then puts a premium on the development 
of algorithms that are highly parallelizable and closely tied to, or even adaptive to, 
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complex multiprocessor architectures.  In early efforts in this direction, several groups 
have developed algorithm libraries for specific functions that automatically optimize the 
details of architecture-dependent traits such as data block size (to match processor cache 
size) so as to self-optimize performance on a specific architecture.  Examples include the 
FFTW library for FFT computations [29], the ATLAS system of linear algebra routines 
[34], and the SPIRAL system for DSP algorithms [35].  However, much more work is 
still needed to develop efficient algorithms for systems based on hundreds or thousands 
of processors. 

 

Signal Processor

Hardware Software

IC Devices FunctionalityComputer Algorithms
Architecture

Signal Processor

Hardware SoftwareHardware Software

IC Devices FunctionalityComputer Algorithms
Architecture  

Figure 8. Evolution of Figure 1 to reflect the growing interdependence of algorithms and processor 
architectures. 

A complementary approach being pursued by several university and commercial design 
teams is examining new processor architectures that better match the characteristics of 
many signal processing applications.  A representative example is Stanford University’s 
“Smart Memories” project [36], which uses a tiled microprocessor architecture to 
overcome wire delay and communication latency problems in large chips while taking 
advantage of extensive parallelism and data locality often found in signal processing and 
multimedia applications.  In essence, these architectures accelerate the incorporation of 
large-scale multiprocessor design techniques, such as multiprocessor clusters in various 
topologies with local memory and high bandwidth interconnection, multi-level memory 
hierarchies, and dataflow programming models to the single IC level. 

In the search for fundamentally better functionality, algorithms may evolve in a number 
of new directions.  Certainly multiscale algorithms such as the wavelet transform and the 
multipole methods mentioned earlier will be increasingly important.  Novel conceptual 
frameworks such as “quantum signal processing” [37] extend classical linear algebraic 
computations.  The best architectures for such procedures are still a matter of research.  
More fundamentally, nonlinear methods are finding increasing use, especially in image-
oriented and some statistical applications.  Nonlinear techniques make heavy use of non-
arithmetic operations such as sorting and counting instead of the traditional sum-of-
products.  This change could have profound implications for the design of successful 
signal processing architectures.  At a minimum, nonlinear techniques move the 
computational emphasis from floating point to fixed point operations. 
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Even farther reaching is the increasing interest in the development of “knowledge-based” 
signal processing, where traditional arithmetic algorithms are modified through the 
incorporation of external data sources that constrain or guide the problem solution, for 
example through data selection and editing.  For instance, estimates of heterogeneous 
clutter interference statistics used in adaptive detection and tracking algorithms can be 
improved by editing and augmenting the radar data with information from geographic 
information systems (GIS) and other sources. 

If the predictions in  regarding the cost of computation hold true, new paradigms for 
developing and implementing signal processing algorithms will certainly be required.  
Implementing a sequential, von Neumann program in 1018 bytes of memory in the year 
2030 hardly seems plausible, much less optimal.  A current example of where such new 
programming paradigms are needed is research in “cognitive technologies” for 
computing systems for applications such as mobile robotics and human-computer 
interaction.  These new concepts in signal processing not only create new capabilities, 
they also create both the opportunity and the need for continued progress in algorithm 
innovations if we are to continue, or perhaps even increase, the phenomenal growth in 
signal processing performance. 

 

7 SUMMARY AND CONCLUSIONS 
Progress in signal processing capability is the product of progress in IC devices, 
architectures, algorithms and mathematics.  It is well known and expected that hardware 
capability improves at a rate of 1.5 orders of magnitude per decade.  Less appreciated is 
that, over the long term, the continuing cycle of new functionality and efficient 
algorithms has contributed a similar rate of improvement.  Thus, the total progress in 
signal processing capability owes an equal debt to both the software side and the 
hardware side. To maintain the same rate of progress in the future, it is essential that we 
continue our investments in both areas. 

There are sound reasons to maintain, or even to increase, our annual investment in DSP 
software R&D.  The remaining lifetime of Moore’s Law is a favorite topic of speculation, 
but many commentators believe that for silicon CMOS, it can be expected to hold for 
perhaps another ten years [6].  Others argue that the rate of growth will slow soon due to 
such issues as power consumption and wire delays on chips that are very large compared 
to the feature size [35].  Gordon Moore himself has recently predicted that a slowdown is 
imminent, though he did not attempt to quantify by how much [38].  When progress in 
computing hardware does someday falter, progress in new functionality and fast 
algorithms will provide the principal paths to increased capability. 

The scope of research opportunities in algorithms is actually expanding.  Many of the 
traditional examples of algorithm breakthroughs we have cited were new computational 
procedures that substantially reduced operation counts for a specific function; the 
solutions of PDEs, sorting, and the FFT are all examples.  New mathematical techniques 
provide new opportunities for similar improvements. Algorithms that achieve speedups 
by clever matching of mathematical problem structure to computer architecture represent 
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a very different avenue of attack.  More fundamentally, emerging research into 
knowledge-based and cognitive systems opens up to scrutiny entirely new types of both 
functionality and computational complexity. 

Physical limits will eventually halt the exponential shrinkage of ICs. However, economic 
considerations may slow IC progress before the physical limits are reached [5],[6].  Thus, 
there is a real prospect of a slowdown in the half of signal processing progress 
contributed by improvements in semiconductor and microprocessor technology.  On the 
other hand, we have noted that the cost of maintaining and even growing an active and 
robust signal processing research community is a fraction of the investment needed to 
keep semiconductors on the Moore’s Law growth curve.  Relatively modest, less rapidly 
growing investments, are likely to maintain the contributions of algorithm and 
functionality research to the total progress in signal processing performance.  Once 
Moore’s Law begins to slow, we conjecture that significant increases in the level of 
investment in algorithm research will be needed to sustain the performance 
improvements we have come to rely upon, enabling continued exponential performance 
growth without the exponentially increasing costs of semiconductor technology. 
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