
1/28/2004 8:07 AM

Page 1

Chips, Architectures and Algorithms: Reflections on the
Exponential Growth of Digital Signal Processing Capability

Mark A. Richards1 Gary A. Shaw2

School of Electrical & Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332-0250

MIT Lincoln Laboratory
244 Wood Street

Lexington, Massachusetts 02420-9185

ABSTRACT
The celebrated 1965 prediction by Gordon Moore regarding exponential improvements in
integrated circuit density is so widely known, and has proven so accurate, that it has been
elevated to the status of a “law”. Less appreciated is the fact that many areas of
computation have benefited equally from progress in algorithms. In this paper we
compare and contrast the contributions to progress in signal processing capability of
“hardware” (integrated circuits and computer architectures) and “software” (functionality
and algorithms). While acknowledging the enormous impact that Moore’s Law growth in
hardware performance has had on signal processing applications, we make the case that
algorithm improvements, in the form of improved functionality and implementation, have
contributed significantly to past progress as well. We discuss important differences in the
ways that progress in the hardware and software realms contribute to signal processing
capability, and describe how application developers tend to draw successively on each
different domain of improvement as their product designs evolve over time. Finally, we
argue that sustaining exponential growth in signal processing applications in the future
depends more than ever on sustaining innovation in software and algorithm development.

1 INTRODUCTION
Digital signal processing (DSP) emerged as a recognized field of study with the
publication of the first DSP textbook by Gold and Rader in 1969 [1]. It was in this same
time period that Gordon Moore, then a pioneer of integrated circuit (IC) design at
Fairchild Semiconductor, was asked during a keynote speech to comment on the likely
course for this new technology. Moore’s development team had completed a 32
transistor IC in 1964 and a 64 transistor IC in 1965. Based on this scant historical data,
Moore conjectured that it should be possible to double the number of transistors, and
therefore, in some sense, the IC performance every year [2]. In a 1965 paper he argued
that the number of “components” per IC could double every year through at least 1975
[3]. In 1975, with 10 years of experience in designing chips of exponentially increasing
complexity, Moore amended his prediction to a doubling every two years [4]. By the late
1970s the rate appeared to have stabilized at a doubling every 18 months. It is this

1 E-mail: mark.richards@ece.gatech.edu
2 E-mail: shaw@ll.mit.edu

mrichard
Text Box
Submitted to IEEE Signal Processing Magazine
December 2004

Copyright Mark Richards and Gary Shaw 2004
All Rights Reserved.

1/28/2004 8:07 AM

Page 2

variant that is perhaps most commonly recognized as Moore’s Law [5],[6]. It has stood
the test of time, with exponential improvement in IC technology the rule for more than 40
years.

Even with these remarkable improvements in IC technology, many important
applications for DSP would not be viable today without commensurate reductions in the
computational complexity of foundational signal processing algorithms. Many more
capabilities would not exist but for the emergence of entirely new signal analysis and
processing paradigms. This paper examines the relative impact of improved IC
technology and computing architectures, or more generally computing “hardware”,
versus fast algorithms and new mathematical techniques (computing “software”) in
advancing the capability of digital signal processing. We describe the different ways in
which progress in hardware and software tends to impact signal processing capability,
and how application developers have historically drawn on these different types of
progress at different points in product maturation. The 40-year history of DSP hardware
and algorithm development highlights the value of continued investment in signal
processing algorithms, and also provides a perspective for conjecture regarding the future
evolution of DSP technology.

2 GETTING MORE FROM SIGNAL PROCESSING
Signal processing is performed using signal processors; today, this generally means a
digital machine, usually programmable. The capability of a signal processor is
determined by its “hardware” and “software”. By “hardware” we mean the physical
implementation, which includes both individual ICs and the system architecture.
“Software” is the computational procedure, which includes both the mathematical
functionality and the particular algorithm by which it is implemented. For example, the
discrete Fourier transform (DFT) is a particular mathematical function, a transformation
of one data sequence into another with different and useful properties. The fast Fourier
transform (FFT) is a particular sequence of computations that implements the DFT
efficiently. Figure 1 illustrates this decomposition of a signal processor into IC devices
(ICs) plus architecture, and functionality plus algorithms.

Signal Processor

Hardware Software

Computer
Architecture

IC Devices Algorithms Functionality

Signal Processor

Hardware SoftwareHardware Software

Computer
Architecture

IC Devices Algorithms FunctionalityComputer
Architecture

IC Devices Algorithms Functionality

Figure 1. “Hardware” and “software” elements of a digital signal processor.

1/28/2004 8:07 AM

Page 3

Continued research and technology development in signal processing are motivated by
the ever-present demand to derive more information from signals. “More” can mean at
least three different things:

• Faster: Derive more information per unit time; or

• Cheaper: Derive information at a reduced cost in processor size, weight, power
consumption, or dollars; or

• Better: Derive higher quality information, for example, higher precision, finer
resolution, higher signal-to-noise ratio, or reduced compression losses.

“Faster” can be achieved in two ways. A faster hardware approach may simply execute
algorithms on a machine capable of more operations per second. This strategy is a direct
beneficiary of denser, faster ICs and of architectural innovations such as multiple
instruction execution techniques, memory hierarchies and, in larger-scale applications,
multiprocessor architectures and communication fabrics. A software approach may adopt
a new algorithm that implements a mathematical function in fewer operations (and with
different precision, memory requirements, and quantization noise properties). Even the
most basic DSP functions provide ample opportunity for diverse implementations. For
example, convolution with a finite-impulse response (FIR) filter impulse response can be
implemented with a single straightforward convolution sum, frequency domain “fast
convolution”, or overlap-add or overlap-save methods (which in turn can be implemented
in the time or frequency domain) [7]. The variation in arithmetic operation count for
alternate implementations can easily be on the order of 5:1.

Improvements in signal processing hardware and software are not necessarily
independent. It is increasingly the case that algorithms must be explicitly matched to the
architecture of a multiprocessor system, and even to the internal architecture of
microprocessors, in order to achieve the highest speeds. Conversely, multiprocessor
architectures, especially communication fabric topologies, are sometimes designed to
maximize the execution speed of particular algorithms they will host. For example,
hypercube interconnection architectures are ideal for computing FFTs, while various
block-cyclic data distributions are well-matched to many vector-matrix computations.
Matching of architectures and algorithms does not reduce arithmetic operation counts, but
it can significantly reduce the overhead requirements of memory access and data
communication.

At first glance, more efficient (“cheaper”) signal processing appears to depend primarily
on improvements in hardware technology. Improved semiconductor technology allows
the same operations to be implemented in less space, less weight, with lower power
consumption, or at lower dollar cost. However, software also contributes to more
efficient implementations. Conventional fast algorithms reduce operation counts and
thus power consumption, but it is possible to go far beyond this to use a variety of
coordinated software and hardware techniques to reduce power consumption [8].

As with “faster”, “better” may achieved by software and, in some cases, hardware
approaches. Improved devices may enable sampling with more bits of resolution and

1/28/2004 8:07 AM

Page 4

thus reduced quantization noise at a given sampling rate, or may compute an algorithm in
floating-point instead of fixed-point arithmetic in real time. Software improvements
come from new algorithms that obtain higher quality results from the same data as older,
established procedures. A good example is the introduction of model-based spectrum
estimation techniques such as autoregressive moving average (ARMA), the multiple
signal classification (MUSIC) algorithm, or eigenspectrum techniques. Compared to
classical Fourier methods, these techniques achieve higher spectral resolution from
limited data; some allow enforcement of a priori constraints.

An important subset of “better”, perhaps deserving of a separate category, is methods that
extract new or different types of information from signals of interest. As technology
evolves, entirely new domains of application are sometimes opened, or entirely new ways
of solving existing problems become feasible. In this regard, “better” includes the
discovery and application of entirely new functionality; for example, a novel function or
transformation on the data that reveals information previously unobtainable by means of
existing functions and methods. Examples of such “new math” for signal processing
include wavelet techniques for nonstationary signal analysis, the Viterbi algorithm for
signal coding, and the emerging field of nonlinear signal processing. Whereas “faster”
and “better” come from progress in hardware and in the algorithm aspect of software,
entirely “different” information is obtained via innovations in the functionality aspect of
software.

3 GROWTH IN SIGNAL PROCESSING PERFORMANCE
3.1 THE CONTRIBUTION OF HARDWARE

The capability of the physical machine implementation (“hardware”) of a signal
processor is affected by the performance of the individual ICs that comprise the
processor, memory, and communication elements, as well as the architecture that defines
the overall organization of these elements. In this section we consider the rates of
progress in ICs and computer systems.

3.1.1 Moore’s Law

As originally stated, Moore’s Law addressed the number of “components”, primarily
transistors, on an integrated circuit [3]; the density or performance per unit cost was not
addressed directly. As understood today, Moore’s Law predicts a doubling in circuit
density, and concomitant improvement in performance, about every 1.5 to 2 years. This
is equivalent to 1.5 to 2 orders of magnitude every decade, a time scale more appropriate
to the long view taken in this paper. Figure 2 shows that the density of Intel
microprocessors, measured in transistors per chip, has closely followed this prediction for
30 years. The average growth rate of the data in Figure 2 is 1.5 orders of magnitude per
decade. The related metric of clock rate has also followed an exponential growth curve,
albeit a slower one; since 1978, the clock rate of the same Intel microprocessors has
increased at an average rate of one order of magnitude per decade.

1/28/2004 8:07 AM

Page 5

1

10

100

1000

10000

100000

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

Year

Tr
an

si
st

or
s

(K
)

4004

8080

80486DX4

8085
8008

Pentium
Pro

8088

8086

Pentium II

80286

80486DX

Celeron

80386DX 80486DX2

Pentium
III

Pentium

Pentium 4

Figure 2. Growth in IC density as evidenced in Intel microprocessors. The solid line corresponds to an

overall growth rate of 1.5 orders of magnitude per decade. Data from [9].

Signal processing practitioners are concerned with computational performance.
Because traditional core DSP algorithms are dominated by sum-of-products calculations,
practitioners have long focused on the number of mathematical operations per second as
a simple but meaningful indicator of processor performance. Since the 1982 introduction
of the Texas Instruments TMS32010 DSP, it became common for DSP microprocessors
to incorporate dedicated units to perform multiplications in a single cycle, so that both
additions and multiplications became of equal importance in evaluating processor speed
for DSP. This in turn made IC clock rate a good indicator of arithmetic performance for
a given algorithm. Thus, Moore’s Law growth in IC density, and the concomitant
increase in clock rates, has been a useful proxy for growth in DSP computational
capability, at least over the last 20 years.

3.1.2 IC Minimum Feature Size Scaling

While Moore’s Law has held sway for some 40 years, the continuing shrinkage of feature
sizes at its root has a number of consequences that will eventually limit further progress
in CMOS-based devices. Though development of finer-resolution mask making
equipment remains a major technical challenge, thermal and economic considerations
may arise as limiting factors sooner. For example, from 1970 to 2003, wafer exposure
systems have risen in cost from about $20,000 to over $10,000,000, while wafer
fabrication facility costs have risen from less than ten million dollars to over two billion
dollars [10]. Productivity has risen even faster, so that facility cost per unit output has
dropped rapidly. Nonetheless, the absolute cost of a new wafer fabrication facility is
reaching a scale that may be beyond the reach of even the largest semiconductor
companies, requiring the formation of consortia or even of industry-government
partnerships.

1/28/2004 8:07 AM

Page 6

However, power and its attendant thermal considerations may pose the most imminent
threat to Moore’s Law. Transistor density scales as ∆−2, where ∆ is the minimum feature
size. To a first approximation, the underlying trends in power, power density, clock
frequency, and energy per instruction can also be expressed in terms of minimum feature
size.. Table 1 summarizes the relationships, assuming constant die area and supply
voltage. For example, the efficiency of microprocessors in terms of energy per instruction
(nJ/instruction, equivalent to power per unit throughput in mW/MIPS) scales in
proportion to ∆. This trend, sometimes referred to as “Gene’s Law” after Gene Frantz of
Texas Instruments, is illustrated in Figure 3, which shows that the power efficiency of a
variety of microprocessors and DSP chips has improved at a rate of about 1.7 orders of
magnitude per decade.

Table 1. Impact of Feature Size ∆ on Microprocessor Metrics

Performance
 Metric

Geometrical
Dependency

Clock Frequency 1/∆

Transistor Power ∆

Transistor Density 1/∆2

Total Device Power 1/∆

Power Density 1/∆

Energy per Instruction ∆2

0.001

0.01

0.1

1

10

100

1000

10000

100000

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Year

nJ
/In

st
ru

ct
io

n

Frantz
Smailagic
Intel
trend

Figure 3. Energy per instruction for various processors. Data from [11],[12],[13].

1/28/2004 8:07 AM

Page 7

Unfortunately, as indicated in Table 1, total power for a given die size increases in
inverse proportion to feature size. The power consumed by Intel microprocessors when
running a high-power application has grown about 24% per year, or just under one order
of magnitude per decade [14]. Gunther et al show that the cost of cooling these devices
rises rapidly when the power dissipation approaches 70 W per chip, primarily because
heat sinks must be discarded in favor or more elaborate heat pipes or other technologies.
Thus, there is a major cost incentive to keep power dissipation below 70 W per chip for
desktop-class machines. The breakpoint would be much lower for small embedded
processors.

Figure 4 shows a similar growth in power density and compares it to the power densities
for a few non-electronic reference systems. Zhirnov et al argue in [15] that fundamental
limits on the ability to remove heat as the power density increases will soon put an end to
the simultaneous scaling of both clock speed and density, instead forcing them to be
traded off: higher densities will require lower speeds to limit the power density; higher
speeds will require lower densities.

Figure 4. Power density of Intel microprocessor family Data from [14],[16]..

3.1.3 Architecture

The exponential improvement in processor speed, with its attendant pressure on system
communication and memory access, has now made memory hierarchy, parallel
architecture, and communication fabrics equally important cointributors to computing
system performance. Historically, computing system performance has also improved
exponentially, though not always at as high a rate as microprocessors. For example, in a
1993 book, Edward Yourdon claims a 20 to 30% improvement per year in “hardware
technology”, equivalent to 0.8 to 1.1 orders of magnitude per decade [17]. Patterson and
Hennessy [18] describe a rate of computing system performance improvement of 1.1
orders of magnitude per decade in the 1970s, increasing to about 1.3 as the

1/28/2004 8:07 AM

Page 8

microprocessor revolution matured. In a 1984 column [19], Jon Bentley cites work
showing that from 1945 to 1985, supercomputing hardware increased in speed by about
factor of about 6x105, or just over a more optimistic 1.4 orders of magnitude per decade.
All of these examples are below the Moore’s Law rate of growth for ICs alone..

Recently, progress in computationally efficient architectures at both the microprocessor
and system levels has elliminated this lag. Continuing in [18], Patterson and Hennessy
show the rate of improvement at the microprocessor level growing to 1.8 orders of
magnitude per decade in the 1980s with the introduction of reduced instruction set
(RISC) architectures. Numerous other sources and commentators also show that the
growth in overall computing capacity now tracks, or even exceeds, Moore’s Law. Sun
Microsystems co-founder Bill Joy stated in 2001 that, starting in 1987, the rate of
microprocessor performance improvement had increased from 35% per year in its first 15
years to about 55% per year [20], equivalent to a doubling every 18 months and 1.9
orders of magnitude per decade. This increase in the rate of exponential speedup, is
attributable more to the effects of architectural change in the microprocessor and memory
hierarchies than to the semiconductor process improvements that drive Moore’s Law.

Another measure of system performance is the Top 500 supercomputer list [21], based on
speed in computing the LINPACK floating point linear algebra benchmarks. Figure 5
shows performance improvement rates for supercomputers over a decade ending in 2002
of 2.9 orders of magnitude per decade for the fastest computer at a given time (denoted
by the curve labeled N=1), to 2.5 orders of magnitude per decade for the 100th-fastest
machine (N=100), to 2.8 (N=500) orders of magnitude per decade.

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

Ju
n-

93

Ju
n-

94

Ju
n-

95

Ju
n-

96

Ju
n-

97

Ju
n-

98

Ju
n-

99

Ju
n-

00

Ju
n-

01

Ju
n-

02

Ju
n-

03

P
ea

k
P

er
fo

rm
an

ce
 (G

FL
O

PS
)

N=1
N=100
N=500

Figure 5. Performance growth of the 1st (N=1), 100th (N=100), and 500th (N=500) place computer in the

Top500 supercomputer list. Data from [21].

1/28/2004 8:07 AM

Page 9

3.2 THE CONTRIBUTIONS OF SOFTWARE

“Software” here includes both the functionality to be implemented (the mathematics of
the problem formulation), and the specific computational procedure to be followed (the
algorithm). The choice of algorithms affects not only speed but also quality issues such
as quantization noise and resolution, and can even affect other hardware metrics such as
power consumption. Here, we focus primarily on speed. We can expect that a signal
processing algorithm’s execution time is approximately proportional to its arithmetic
operation count. Thus, operation counts are a simple proxy for algorithm speed.

3.2.1 Fast Algorithms

Have algorithm improvements kept pace with hardware improvements in contributing to
the increases in computing and signal processing capability? To answer this question, we
need to observe the performance of selected signal processing applications over a long
period of time. Bentley [19] documents a scientific computing example, the solution of
3-D elliptic partial differential equations. He shows that from 1945 to 1985, operation
counts for problems computed on an NxNxN grid were reduced by a typical factor of
N4/60 through a succession of algorithmic improvements. For a broadly representative
problem size of N = 64, the improvement is a factor of about 3x105, just under 1.4 orders
of magnitude per decade. Thus, the impact of algorithmic improvements on the time
required for this class of scientific calculations over this period was similar to that of
computing hardware improvements. Indeed, Rice ([22], p. 343) states that “… the
progress made through better methods from 1945 to 1978 exceeds the progress made
through faster computers”.

In a famous scientific computing example, IBM’s “Deep Blue” supercomputer beat world
champion Garry Kasparov in a chess competition in May 1997. Deep Blue was a special
purpose machine with a peak processing speed of up to 40 trillion special-purpose
operations per second and a design carefully matched to the algorithms to be used.
Moravec [23] claims it to be equivalent to a general-purpose processor having throughput
on the order of 1-3 trillion instructions per second (TIPS). Less than 6 years later, in
February 2003, Kasparov played the then-champion “Deep Junior” computer chess
program to a draw. The host computer, based on four 1.9 GHz Pentium 4 processors,
was capable of a peak throughput of approximately 15 billion instructions per second
(GIPS).

If we consider the Deep Blue machine to be a 1.5 TIPS machine for arithmetic
convenience, then the power of the machine needed to achieve the same functional result,
namely playing chess on the level of Garry Kasparov, decreased by a factor of 100 in six
years. Equivalently, the power of the algorithms used increased by the same factor of
100 in six years, corresponding to a blistering rate of 2.154x per year, or 3.33 orders of
magnitude per decade. As we have seen, the rate of increase in microprocessor clock
rates is about one order of magnitude per decade. To achieve this 100x speedup from
clock rate alone would have therefore required 20 years. Thus, the algorithm
improvements accelerated the progress from the Deep Blue machine to the Deep Junior

1/28/2004 8:07 AM

Page 10

machine by 14 years. Even if we use the more broadly representative hardware
improvement rate of 1.5 orders of magnitude per decade, the algorithmic improvements
are responsible for a 7.3-year acceleration of progress.

There are many other examples of exponential growth in capability. The downstream
speeds of common dial-up modems provides a more modest example of exponential
growth in signal processing capability for a particular function sustained over a
significant period of time. These improvements were primarily algorithm-driven, taking
advantage of advances in modulation and coding schemes. For example, binary phase-
shift keying (BPSK) gave way to quadrature PSK (QPSK) or quadrature amplitude
modulation (QAM), resulting in rates increasing from 300 bps to 1200 bps. The
introduction of trellis coding and a 16-point constellation increased rates to 9600 bps; a
128-point constellation increased rates further to 14.4 kbps. Treichler, Larimer, and
Johnson [24] show that data rates over unconditioned lines increased from 2400 bits per
second (bps) to 56000 bps in approximately 13 years, equivalent to an average of 23%
per year, or just over 1 order of magnitude per decade. Eldering, Sylla, and Eisenach [25]
provide a similar review based more on the release dates of international modem
standards. If we start with the 2400 bps modem, their data gives a growth rate of 1.2
orders of magnitude per decade, somewhat more consistent with the Treichler et al data.

Complete signal processing applications are generally composed of a number of
component algorithms. The speedups discussed above are a composite of speedups of
varying degree in the components of the overall application. It is therefore useful to look
in more detail at improvements in specific component algorithms.

If there is a single canonical signal processing algorithm benchmark, it is the 1K (N =
1,024) complex FFT. Direct implementation of the DFT sum requires N2 complex
multiplications, or just over 10

6
 for N = 1024. The original radix-2 Cooley-Tukey

algorithm [26], published the same year (1965) as Moore’s Law, reduces this to
(N/2)log2N, or 5120 for N = 1024. This reduction by a factor of about 200 is equivalent
to 15 years of hardware improvement at 1.5 orders of magnitude per decade! That is,
publication of the FFT made it possible to compute a 1024-point DFT in an amount of
time that would not have been achievable for another 15 years if one relied only on
Moore’s Law speedups of computer hardware. As shown in Figure 6, for longer FFTs
even more years of hardware improvement are needed to effect the same reduction in
computation time that the FFT affords over a direct sum-of-products DFT.

The FFT algorithm is not unique in achieving an exponential reduction in computational
complexity for a core function. In 2000, the journal Computing in Science and
Engineering published a special issue addressing “The Top 10 Algorithms” of the 20th
century [27]. Two more outstanding examples of fundamental improvements in
computation complexity drawn from this list are the Quicksort algorithm and the fast
multipole algorithm. Quicksort reduces the average complexity of the problem of sorting
N items into numerical order from O(N2) to O(NlogN), the same O(N/logN) gain provided

1/28/2004 8:07 AM

Page 11

by the FFT over the DFT.5 The fast multipole algorithm is even more powerful, reducing
the complexity of N-body simulations from O(N2) to O(N).

0

5

10

15

20

25

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Radix-2 FFT Order

Ye
ar

s
of

 H
ar

dw
ar

e
Im

pr
ov

em
en

t
R

eq
ui

re
d

fo
r E

qu
al

 C
om

pu
ta

tio
na

l
Sp

ee
du

p

Figure 6. Years of Moore’s Law improvement required to equal FFT computational savings relative to a
sum-of-products DFT. Assumes hardware speedup of 1.5 orders of magnitude per decade (doubling every

two years).

Another example of order reduction by a full factor of N is the solution of the
autocorrelation normal equations used in parametric modeling. The classical algorithm
for solution of the (N+1) equations resulting from an order N model is Gaussian
elimination, which requires approximately N3/3 multiplications. The first developers of
linear prediction used the Cholesky method to solve the equations with half as many
computations. Levinson’s recursion, published in 1947, cut the number of
multiplications to N2+2N [28]. This is a major reduction in order from O(N3) to O(N2) is
greater than that obtained for DFTs by the FFT algorithm.

Nonetheless, the speedups in solving the normal equations have not had as dramatic an
impact as has the discovery of the FFT. The reason is that the typical applications of
linear prediction in signal processing involve relatively small order problems, limiting the
gain in absolute terms. For example, linear prediction of speech typically involves an
order of N = 8 to 12. For N = 10, the reduction from Gaussian elimination to the
Levinson algorithm is a factor of 2.8; for N = 15, it rises to 4.4. At 1.5 orders of

5 The notation O(N2) means “order of N2”, i.e. proportional to N2.

1/28/2004 8:07 AM

Page 12

magnitude per decade, these improvements are comparable to 3 and 4.4 years of
hardware improvement, respectively.

Reduced computational complexity allows us to solve a given problem more quickly, or
to solve a larger-order problem in the same amount of time. Such speedups are not
always the goal of algorithm improvements. The exploding use of portable audio
devices, laptop computers, cellular telephones and personal digital assistants (PDAs) has
drastically increased the importance of power efficiency. Power efficiency is being
addressed at every level, from new sources such as micro fuel cells to low power circuit
design in semiconductors, and algorithms can contribute here as well [8]. Classical
algorithm speedups have a direct payoff in energy efficiency because they reduce the
number of operations required to complete a computation, allowing the use of a slower or
less dense processor. Parallelization of algorithms is another approach to architecture
and algorithm-based power reduction. Parallelization enables a computation to be done
with multiple, slower processing units instead of one very fast one. The use of slower
units allows reductions in chip supply voltage and, since power consumption is
proportional to the square of voltage, the parallel approach will often consume less total
power. Approximation is an algorithmic approach that trades off accuracy for efficiency.
An obvious way to do this is by using fixed- instead of floating-point arithmetic. More
sophisticated methods exist, for example the use incremental refinement algorithms that
allow computations to be stopped early, or of lossy compression algorithms to reduce the
amount of data that must be transmitted, processed, and stored.

3.2.2 Manifestations of Hardware vs. Algorithm Improvements

Considered in total, the evidence cited in the preceding sections suggest that a rate of
increase in the performance of ICs and computer systems of 1.5 orders of magnitude per
decade can be taken as representative. Furthermore, speedups in computer hardware have
proven relatively frequent and predictable, having persisted at this rate for 40 years now,
and may hold for at least another decade. In contrast, speedups in algorithms are usually
manifested as one fundamental breakthrough such as the basic Cooley-Tukey algorithm,
reducing the complexity of the computation as a function of the problem order (e.g., from
O(N2) to O(NlogN), followed by a consolidation phase featuring a number of lesser
improvements by factors of two or more. The example of the FFT shows that major
improvements in algorithms can produce, in effect, instantaneous progress equivalent to a
decade or more of improvement in signal processing hardware performance, while even
lesser algorithm innovations (factors of 2) equate to a three-year advancement.

It is important to recognize a fundamental difference between algorithm and hardware
improvement. To first order, improvements in hardware speed translate directly to
reductions in computational time, regardless of the algorithm. The benefits of faster
hardware are immediately available to almost all algorithms, and the algorithm speedup
is manifested directly in terms of reduced time for execution. In contrast, a particular
algorithm innovation benefits only those applications that use that class of algorithms,
and the speedup is usually a function of the dimension or order of the problem. While
Bentley’s data suggest that algorithm advances have occurred frequently enough to keep

1/28/2004 8:07 AM

Page 13

pace with hardware progress over the last 40 years, the longer Moore’s Law persists, the
more difficult it becomes for algorithm innovations to maintain parity with hardware
speedups for a fixed problem order. Consider again the DFT example. While the
development of a 1024 point radix-2 FFT pushed processing throughput ahead by a one-
time leap of 15 years, if the dimensionality of the problem (in this example, the FFT size)
does not change, continuing savings from algorithm improvements will be limited to
more modest gains from such techniques as higher radices or algorithms matched to
particular architectures. In contrast, faster microprocessors benefit both the DFT and
FFT algorithms in equal proportion, and continue to do so at a predictable rate so that
over time, hardware speedup will account for an increasing percentage of the cumulative
reductions in computational time.

Furthermore, the impact of reductions in algorithm complexity is blunted when other
processing that is not amenable to fast algorithms is considered. For instance, if a 1K
DFT computation accounts for 80% of the total runtime of an application, then the 200x
improvement in the DFT occasioned by using the FFT will reduce the overall runtime by
a factor of 4.9x, while if the DFT was only 20% of the original computation, the
improvement is only a factor of 1.25x. In comparison, a speedup in individual processors
(especially if balanced with improved memory and communication) benefits the entire
application.

One way to summarize the complementary nature of speedups in hardware versus
algorithms is to note that hardware speed increases exponentially and predictably as a
function of time. As long as Moore’s Law remains in effect, we can count on the fact
that computationally complex algorithms not currently realizable in real time will
eventually become realizable, and we can even predict approximately when! In contrast,
while reduced complexity algorithms are discovered unpredictably in time, they increase
execution speed exponentially and predictably as a function of problem dimension or
order. Therefore, discovery of a fast algorithm acts in effect like the discovery of a
“worm-hole” in time evolution of an application, with the “time-compression” benefit of
the worm-hole increasing in proportion to problem order. The benefit is always
instantaneous and sometimes startling, allowing real-time implementation of high-order
problems long before they would be enabled by hardware improvements.

These observations also suggest the reason that Moore’s Law has become so widely
known, even reaching the consciousness of the general public, while the contributions of
algorithms to computing and signal processing capability seem to be less universally
known or appreciated. The increase in hardware speed benefits all computing, from the
most obscure scientific applications to the most common household PCs, and all
problems from the very large to the very small, in roughly equal measure. The invention
of a fast algorithm benefits only those users whose applications rely heavily on that
algorithm, and even then, provides the most benefit to the highest order problems.

3.2.3 New Functionality

None of these considerations of computing speed address the most fundamental payoff of
algorithm research: the development of entirely new capabilities resulting from the

1/28/2004 8:07 AM

Page 14

application of new concepts and mathematics, the “functionality” component of
“software”. Improvements in hardware speed enable application performance
improvements by supporting more of the existing functionality within a given amount of
time, space, power, or other resource. In contrast, breakthroughs in functionality add
entirely new tools to the signal processing toolbox.

Consider the example of speech recognition, a capability now available in shrink-wrap
software; versions of it are used every day in such mass public applications as airline and
banking telephone-based information systems. It is unlikely that speech recognition
would have ever reached the desktop, no matter how powerful the computer, had it relied
on the vocoder or pattern recognition concepts of the 1960s. Rather, its success was
dependent upon adopting new approaches based on parametric modeling and hidden
Markov models. The migration of world-class computer chess from special-purpose
supercomputers to everyday desktop machines was made possible by a fundamental
change in algorithmic strategy, abandoning brute-force exhaustive generation of all
possible sequences of moves in favor of a less comprehensive but more sophisticated
evaluation of potential moves. Continued research in both functionality and algorithms is
critical because of their potential to produce sudden, large gains in computational
capability and also to enable fundamental new capabilities not achievable through
increased speed alone.

The impetus for entirely new algorithms comes about in at least two ways. The first,
similar to the speech recognition application discussed above, is the response of
researchers to the realization that the performance shortfalls of an existing algorithm suite
are not due to speed limitations, but are fundamental functionality shortcomings. The
second is the development of new application demands that open up entire new fronts of
research. Development of the Internet and cellular networks vastly increased the demand
for progress in data compression and other aspects of telecommunications, emphasizing
implementations that are efficient in the use of computation, memory, and power.

4 MATURATION CYCLES IN APPLICATION IMPLEMENTATION
The implementation of a signal processing capability typically evolves and matures in a
manner that draws at different times on the different mechanisms for achieving “more”:
ICs and architectures, functionality and algorithms. Early development of a new
application idea is typically focused on proof of concept (better or different) rather than
faster or cheaper. The developers are primarily concerned with finding a set of algorithms
that work reliably to perform the desired task adequately. At this stage, the concern is
with identifying and defining functionality, the “math” of the problem that will make the
new application possible. Standard available software tools are used on commodity
laboratory computing platforms, often without much concern (yet) for real-time
performance. Thus, the initial implementations of a new capability rely on new
functionality to achieve progress in signal processing.

Once it is shown that a new capability is possible and useful, the developmental emphasis
often turns to improving the implementation, where improvements might include

1/28/2004 8:07 AM

Page 15

increased speed; reduced size, weight, or power; or reduced cost. This drive for better
implementations brings both hardware and algorithms into play.

Any improvements achieved in algorithm efficiency are of the same fundamental value as
equivalent improvements in hardware speed; but whether such improvements are
available depends on the functionality of the application. For example, it seems unlikely
that further substantial reductions in the operation counts of algorithms for computing
DFTs are likely. Thus, if the new application relies heavily on the DFT, it is not a good
candidate for major algorithmic efficiency improvements over current practice. While
careful attention to algorithmic details may offer significant savings of factors of 2 and 3
over the original prototypes, order-of-magnitude improvements will come only from
improvements in hardware performance. On the other hand, if the new functionality
takes advantage of mathematical approaches for which good fast algorithms are not yet
known, the application can potentially benefit from both hardware performance
improvements and from algorithm efficiency breakthroughs. Even if this is not the case,
if the functionality is compatible with cache-savvy and parallel implementations,
opportunities exist for obtaining speedups through parallel algorithms that, while not
reducing fundamental operation counts, do match the problem architecture to the
processor architecture in ways that significantly improve efficiency. An example is the
FFTW library [29], which optimizes smaller components of the FFT algorithm to the
cache structures of particular microprocessors used in each pipeline stage.

However, there will always come a day when all of the efficiencies that can be wrung out
of the mathematics of an application have been realized. When that day comes, only
hardware speedups will provide further improvements in the implementation of the
application. If these are too slow to come, then the application must be improved by a
fundamental shift to a new way of achieving the same end, i.e. to new math. For
instance, no further improvements in conventional dial-up modem speeds have occurred
since 1999; instead, progress has been achieved by a shift to a new telecommunication
loop architecture, digital subscriber line (DSL). Such a paradigm shift then enables a
new cycle of algorithm improvements to accompany the steady march of semiconductor
improvements. This process of application development and evolution is illustrated in
Figure 7. A new application concept is demonstrated in an initial proof-of-concept
realization using a particular algorithmic approach and hardware design. Multiple cycles
of hardware and algorithm improvements result in a series of faster, better, and cheaper
implementations. When algorithmic improvements to the basic mathematical
functionality are exhausted, Moore’s Law continues to afford improvements in
performance. However, at some point the drive for “more” will be stopped by
fundamental limitations of the functional approach. At this point, a change to a different
approach based on new math and physics is required, enabling new cycles of hardware
and software improvements.

1/28/2004 8:07 AM

Page 16

Figure 7. Notional illustration of the initial development and evolution of a signal processing application.

As another example, early vocoders, as they would be implemented today, are essentially
filterbank technologies and as such could take full advantage of improvements in DFT
algorithms and semiconductor technology. However, building ever faster and more
compact vocoders would never achieve the improvements in speech coding and
generation occasioned by the shift to predictive modeling, a fundamentally different
representation of the signal. The predictive approach shifted the emphasis away from
DFTs and onto matrix algorithms for the solution of the normal equations. This in turn
brought opportunities for new algorithmic efficiencies through the Cholesky, Levinson,
and Schur algorithms discussed earlier.

Progress in signal processing capability is not always in the direction of faster execution
times. In many cases, the extra capability provided by faster hardware or algorithms is
used not to make a given functionality run more quickly, but to allow the designer to
implement a more complicated function in the same amount of time. That is, so long as
real-time deadlines are met, functionality expands to occupy the processing power
available. An example is the introduction of digital I/Q (in-phase and quadrature)
filtering in coherent communication and radar receivers. This technology replaced
analog mixing and filtering with digital techniques requiring a great deal of high speed
digital filtering. In exchange, the receiver designer achieves reduced I/Q channel
mismatches, a major error source. This form of progress is simply an example of
choosing “better” over “faster”.

5 INVESTMENTS IN SIGNAL PROCESSING PROGRESS
Computing in general, and signal processing in particular, have both benefited from, and
been driven by, the forty-year reign of Moore’s Law. In this paper, we have argued that
signal processing applications have also benefited significantly from progress in
algorithms, and that many applications could not have succeeded without the benefit of
new mathematical concepts and reduced-complexity algorithms, no matter how fast the

1/28/2004 8:07 AM

Page 17

hardware. We maintain that the contributions of hardware and algorithms over time have
been, in a broad sense, comparable. An interesting question is what the cost has been to
achieve the improvements in hardware and algorithm performance over the past 40 years.
While it is beyond both the scope of this article and the capability of the authors to
accurately estimate the investments it took to get to our present state, we can conjecture
regarding what it will take to move ahead at the same rate.

The capital cost of semiconductor fabrication plants has risen from about $6 million in
1970 to $2 billion for next generation facilities currently coming on line [5], [10], [30].
The construction of these facilities is an unavoidable cost of striving to stay on the
Moore’s Law curve for semiconductor improvements. Is a similar investment required to
maintain the historically observed rate of improvement in algorithms? We conjecture
that the investment to sustain algorithm innovation has been, and will remain, much less.

To provide at least anecdotal support for this conjecture, consider that the median salary
is 2003 for a full-time academic senior researcher in signal processing algorithm and
software techniques is approximately $100,000, or $120,000 for a similar researcher in
the defense industry [31]. Including overhead costs, the total cost to support our
researcher might be up to $300,000 per year. If the researcher is a professor, he or she
might well be assisted by several graduate students; if employed in an industrial firm, by
one or two junior researchers. We can postulate that for $600,000 per year we might, on
average, be able to support a group of 4 researchers, making the average cost per
researcher about $150,000 per year. $2 billion will support 13,000 researchers for one
year at this rate! Continuing in this vein, the Semiconductor Industry Association (SIA)
reports that combined capital and R&D investments in the semiconductor industry in the
year 2001 alone totaled $31.3 billion [32]; and this is for the U.S. industry only. At
$150,000 per year, a matching investment in algorithm researcher would support over
200,000 researchers and students. Furthermore, the cost of investing in algorithm
research does not increase at the exponential rate observed for semiconductor fabrication
facilities, so that as time goes on, algorithm investments become more cost effective
relative to investments in hardware technology.

Continued exponential improvement in DSP chip performance is wholly dependent upon
smaller-featured devices fabricated in the new semiconductor fabrication facilities.
However, the return on the enormous investment in these facilities is determined not by
the DSP market, but by the much larger markets for memory chips, general purpose
microprocessors, microcontrollers, and all the many other semiconductor devices that
pervade the modern world. Because of this wider impact of semiconductor investments,
we would be foolish indeed to suggest that government and industry should be making
investments in DSP algorithm development equal to those made in device development
and fabrication.7 Yet we perceive quite the opposite that, relative to historical funding
profiles, support for fundamental research in signal processing algorithms and
mathematics is losing ground relative to investment in hardware technology. During the

7 If, however, they should choose to do so, please contact the authors for instructions on where to send the
check.

1/28/2004 8:07 AM

Page 18

same time that we have seen investments in computer hardware rise to $220B annually in
1999, we have also witnessed the disintegration of some of the most distinguished
commercial signal processing R&D organizations, as well as a shift in both civilian and
military R&D from fundamental research to near-term products and demonstration
systems, respectively. Because mathematical functionality and algorithm innovations
have each provided a major share of the total progress in signal processing capability, it is
reasonable to ask how much support should go toward research in DSP algorithms and
functionality so that we can maintain our total rate of progress.

It only takes one person with inspired insight to develop a new technique that can
improve performance by an order of magnitude. Since we can’t know who that person is
in advance, we can seek to improve our odds for a breakthrough by investing in many
research groups. At the end of 2001, there were 18,487 members of the IEEE Signal
Processing Society [33]. This may be only a small fraction of practicing signal
processing engineers, but it is also true that only a small portion of the practicing signal
processing engineers are likely to be involved in research leading to new algorithms. To
focus on DSP engineers active in research, consider the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP). The premier digital signal
processing conference focused on new research, ICASSP attracts as many as 2,000
attendees, though surely many more researchers and students would like to attend.
Considering these two figures, we can conjecture that the active DSP research
community, at least in the U.S., might number between perhaps 5,000 and 20,000
persons. issuesIt therefore appears likely that the funding needed to support the algorithm
development community, and even to advance its rate of progress, is 10% or less of that
invested in semiconductor R&D and capital investment, and just over 1% of the total
computer hardware investment. Considering what it has yielded over the years, the
algorithm development side of signal processing progress is a bargain!

6 FUTURE EVOLUTIONARY PATHS FOR DSP
How will progress in signal processing capability be sustained in the future? Historically,
IC design and fabrication on one hand, and mathematics and new functionality on the
other, have been largely independent endeavors. In many cases, processor architecture
and algorithms are also developed independently. However, as researchers and
developers strive for greater efficiency, architectures and algorithms are becoming
inextricably intertwined, defining a new middle ground that makes hardware and
software increasingly appear as a continuum as illustrated in the revised version of Figure
1, shown in Figure 8. Just as over time additions and multiplications came to have equal
importance in evaluating DSP microprocessor performance, now cache hierarchies,
memory access time, and data communication latencies and rates are becoming equally
significant determinants of system speed. The increasing impact of these architectural
features and thermal considerations upon the efficient use of modern processors is driving
computer design increasingly to parallel multiprocessor systems, in some cases involving
hundreds or even thousands of processors. This then puts a premium on the development
of algorithms that are highly parallelizable and closely tied to, or even adaptive to,

1/28/2004 8:07 AM

Page 19

complex multiprocessor architectures. In early efforts in this direction, several groups
have developed algorithm libraries for specific functions that automatically optimize the
details of architecture-dependent traits such as data block size (to match processor cache
size) so as to self-optimize performance on a specific architecture. Examples include the
FFTW library for FFT computations [29], the ATLAS system of linear algebra routines
[34], and the SPIRAL system for DSP algorithms [35]. However, much more work is
still needed to develop efficient algorithms for systems based on hundreds or thousands
of processors.

Signal Processor

Hardware Software

IC Devices FunctionalityComputer Algorithms
Architecture

Signal Processor

Hardware SoftwareHardware Software

IC Devices FunctionalityComputer Algorithms
Architecture

Figure 8. Evolution of Figure 1 to reflect the growing interdependence of algorithms and processor
architectures.

A complementary approach being pursued by several university and commercial design
teams is examining new processor architectures that better match the characteristics of
many signal processing applications. A representative example is Stanford University’s
“Smart Memories” project [36], which uses a tiled microprocessor architecture to
overcome wire delay and communication latency problems in large chips while taking
advantage of extensive parallelism and data locality often found in signal processing and
multimedia applications. In essence, these architectures accelerate the incorporation of
large-scale multiprocessor design techniques, such as multiprocessor clusters in various
topologies with local memory and high bandwidth interconnection, multi-level memory
hierarchies, and dataflow programming models to the single IC level.

In the search for fundamentally better functionality, algorithms may evolve in a number
of new directions. Certainly multiscale algorithms such as the wavelet transform and the
multipole methods mentioned earlier will be increasingly important. Novel conceptual
frameworks such as “quantum signal processing” [37] extend classical linear algebraic
computations. The best architectures for such procedures are still a matter of research.
More fundamentally, nonlinear methods are finding increasing use, especially in image-
oriented and some statistical applications. Nonlinear techniques make heavy use of non-
arithmetic operations such as sorting and counting instead of the traditional sum-of-
products. This change could have profound implications for the design of successful
signal processing architectures. At a minimum, nonlinear techniques move the
computational emphasis from floating point to fixed point operations.

1/28/2004 8:07 AM

Page 20

Even farther reaching is the increasing interest in the development of “knowledge-based”
signal processing, where traditional arithmetic algorithms are modified through the
incorporation of external data sources that constrain or guide the problem solution, for
example through data selection and editing. For instance, estimates of heterogeneous
clutter interference statistics used in adaptive detection and tracking algorithms can be
improved by editing and augmenting the radar data with information from geographic
information systems (GIS) and other sources.

If the predictions in regarding the cost of computation hold true, new paradigms for
developing and implementing signal processing algorithms will certainly be required.
Implementing a sequential, von Neumann program in 1018 bytes of memory in the year
2030 hardly seems plausible, much less optimal. A current example of where such new
programming paradigms are needed is research in “cognitive technologies” for
computing systems for applications such as mobile robotics and human-computer
interaction. These new concepts in signal processing not only create new capabilities,
they also create both the opportunity and the need for continued progress in algorithm
innovations if we are to continue, or perhaps even increase, the phenomenal growth in
signal processing performance.

7 SUMMARY AND CONCLUSIONS
Progress in signal processing capability is the product of progress in IC devices,
architectures, algorithms and mathematics. It is well known and expected that hardware
capability improves at a rate of 1.5 orders of magnitude per decade. Less appreciated is
that, over the long term, the continuing cycle of new functionality and efficient
algorithms has contributed a similar rate of improvement. Thus, the total progress in
signal processing capability owes an equal debt to both the software side and the
hardware side. To maintain the same rate of progress in the future, it is essential that we
continue our investments in both areas.

There are sound reasons to maintain, or even to increase, our annual investment in DSP
software R&D. The remaining lifetime of Moore’s Law is a favorite topic of speculation,
but many commentators believe that for silicon CMOS, it can be expected to hold for
perhaps another ten years [6]. Others argue that the rate of growth will slow soon due to
such issues as power consumption and wire delays on chips that are very large compared
to the feature size [35]. Gordon Moore himself has recently predicted that a slowdown is
imminent, though he did not attempt to quantify by how much [38]. When progress in
computing hardware does someday falter, progress in new functionality and fast
algorithms will provide the principal paths to increased capability.

The scope of research opportunities in algorithms is actually expanding. Many of the
traditional examples of algorithm breakthroughs we have cited were new computational
procedures that substantially reduced operation counts for a specific function; the
solutions of PDEs, sorting, and the FFT are all examples. New mathematical techniques
provide new opportunities for similar improvements. Algorithms that achieve speedups
by clever matching of mathematical problem structure to computer architecture represent

1/28/2004 8:07 AM

Page 21

a very different avenue of attack. More fundamentally, emerging research into
knowledge-based and cognitive systems opens up to scrutiny entirely new types of both
functionality and computational complexity.

Physical limits will eventually halt the exponential shrinkage of ICs. However, economic
considerations may slow IC progress before the physical limits are reached [5],[6]. Thus,
there is a real prospect of a slowdown in the half of signal processing progress
contributed by improvements in semiconductor and microprocessor technology. On the
other hand, we have noted that the cost of maintaining and even growing an active and
robust signal processing research community is a fraction of the investment needed to
keep semiconductors on the Moore’s Law growth curve. Relatively modest, less rapidly
growing investments, are likely to maintain the contributions of algorithm and
functionality research to the total progress in signal processing performance. Once
Moore’s Law begins to slow, we conjecture that significant increases in the level of
investment in algorithm research will be needed to sustain the performance
improvements we have come to rely upon, enabling continued exponential performance
growth without the exponentially increasing costs of semiconductor technology.

8 ACKNOWLEDGEMENTS
In the course of developing this paper, the authors received encouragement and helpful
comments from a number of their colleagues. They would especially like to thank Al
Oppenheim, Charles Rader, Dennis Healy, Ron Schafer, James Anderson, Dan Campbell,
Gene Frantz, Robert Graybill, and Sherman Karp.

This work was sponsored in part by the Department of the Air Force under Contract
F19628-00-C-0002. Several of the ideas were developed in connection with programs
sponsored by the Defense Advanced Research Projects Agency. Opinions,
interpretations, conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

9 REFERENCES
[1] B. Gold and C. M. Rader, Digital Processing of Signals. McGraw-Hill, New York, 1969.

[2] C. C. Mann, “The End of Moore’s Law?,” Technology Review, June 2000.

[3] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, v. 38(8), April
19, 1965.

[4] D. J. Yang, “The Lawgiver”, sidebar in “Leaving Moore’s Law in the Dust”, U. S. News & World
Report, vol. 129, no. 2, p. 38.

[5] G. D. Hutcheson and J. D. Hutcheson, “Technology and Economics in the Semiconductor
Industry,” Scientific American, Jan. 1996, pp. 54-62.

[6] R. R. Schaller, “Moore’s Law: past, present, and future,” IEEE Spectrum, pp. 52-59, June 1997.

[7] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed.
Prentice-Hall, New Jersey, 1999.

1/28/2004 8:07 AM

Page 22

[8] K. J. Ray Liu et al, “Algorithm-Based High-Performance Multimedia Signal Processing,”
Proceedings IEEE, vol. 86(6), pp. 1155-1202, June 1998.

[9] “Microprocessor Trends” at IC Knowledge web site,
http://www.icknowledge.com/trends/uproc.html.

[10] S. W. Jones, “Exponential Trends in the Integrated Circuit Industry”, at IC Knowledge web site,
www.icknowledge.com/trends/exponential.pdf.

[11] Gene Frantz, “Digital Signal Processing Trends,” IEEE Micro, Nov-Dec 200, pp. 52-59.

[12] Smailagic, A., and Siewiorek, D., “System Level Design as Applied to CMU Wearable
Computers”, Journal of VLSI Signal Processing Systems, Kluwer Academic Publishers, Vol. 21,
No. 3, 1999.

[13] Intel “Microprocessor Quick Reference Guide”,
http://www.intel.com/pressroom/kits/quickref.htm.

[14] S. H. Gunther et al, “Managing the Impact of Increasing Microprocessor Power Consumption,”
Intel Technology Journal, First Quarter 2001. Available at www.intel.com.

[15] V. V. Zhirnov, et al, “Limits to Binary Logic Switch Scaling – A Gedanken Model,” Proceedings
IEEE, vol. 91, no. 11, pp. 1934-1939, Nov. 2003.

[16] “System and Components Reference Guide,” www.pcguide.com/cpu.

[17] E. Yourdon, Decline and Fall of the American Programmer, Prentice-Hall, New York, 1993, p.
268

[18] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative Approach, 2nd ed.
Morgan Kaufmann, San Francisco, 1990.

[19] Jon Bentley, “Programming Pearls,” Comm. ACM, v. 27(11), pp. 1087-1092, Nov. 1984.

[20] W. N. Joy, “Reduced Instruction Set Computers (RISC): Academic/industrial Interplay Drives
Computer Performance Forward,” Computing Research Association position paper,
http://www.cs.washington.edu/homes/lazowska/cra/risc.html.

[21] “Top 500 Supercomputer Sites” web site, http://www.top500.org. Data shown is through the 22nd
biannual list, November 2003.

[22] J. Rice, Numerical Methods, Software, and Analysis: IMSL® Reference Edition. McGraw-Hill,
New York, 1983.

[23] H. Moravec, “When will computer hardware match the human brain?”, Journal of Evolution and
Technology, vol. 1, 1998. Available at www.trnashumanist.com/volum1/moravec.htm.

[24] J. R. Treichler, M. G. Larimer, and C. R. Johnson, Jr., “Voiceband Modems: A Signal Processing
Success Story”, in “Highlights of Signal Processing for Communications” (G. B. Giannakis,
editor), IEEE Signal Processing Magazine, vol. 16(2), March 1999.

[25] C. Eldering, M. L. Sylla, and J. A. Eisenach, “Is There a Moore’s Law for Bandwidth,” IEEE
Communication Magazine, pp. 117-121, Oct. 1999.

[26] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Computation of Complex Fourier
Series,” Mathematics of Computation, vol. 19, pp. 297-301, April 1965.

[27] J. Dongarra and F. Sullivan, editors, “The Top 10 Algorithms”, special issue of Computing in
Science & Engineering, January/February 2000.

[28] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, pp. 417-418, Prentice-
Hall, New Jersey, 1978.

1/28/2004 8:07 AM

Page 23

[29] M. Frigo and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT,” Proc.
IEEE Intl. Conf. Acoustics, Speech, and Sig. Proc., vol. 3, pp. 1381-1384, 1998. Also see
http://www.fftw.org.

[30] “Economic Trends” at IC Knowledge web site,
http://www.icknowledge.com/economics/fab_costs.html.

[31] IEEE-USA 2003 Salary Survey, available through salary.ieeeusa.org.

[32] Semiconductor Industry Association web site, http://www.semichips.org/home.cfm.

[33] “Membership Development Progress Report,” IEEE Technical Activities Board, January 2002.

[34] R. C. Whaley, A. Pettitet, and J. J. Dongarra, “Automated Empirical Optimization of Software and
the ATLAS Project”, available at http://math-atlas.sourceforge.net/

[35] Markus Püschel, et al, “SPIRAL: A Generator for Platform-Adapted Libraries of Signal
Processing Algorithms,” to appear in Journal of High Performance Computing and Applications.

[36] K. Mai et al, “Smart Memories: a modular reconfigurable architecture,” Proceedings 27th Intl.
Symp. on Computer Architecture, pp. 161-171, 10-14 June 2000.

[37] Y. C. Eldar and A. V. Oppenheim, “Quantum Signal Processing”, IEEE Signal Processing
Magazine, vol. 19, no. 6, pp. 12-32, Nov. 2002.

[38] M. Kanellos, “More life in Moore’s Law, creator says”. CNET News.com, July 9, 2002,
http://news.com.com/2100-1001-942671.html. The remark was made in an interview following
the awarding of the Presidential Medal of Freedom to Dr. Moore.

