
QR Decomposition on GPUs

Andrew Kerr, Dan Campbell, Mark Richards

Georgia Institute of Technology, Georgia Tech Research Institute

{andrew.kerr, dan.campbell}@gtri.gatech.edu, mark.richards@ece.gatech.edu

ABSTRACT
QR decomposition is a computationally intensive linear al-
gebra operation that factors a matrix A into the product of
a unitary matrix Q and upper triangular matrix R. Adap-
tive systems commonly employ QR decomposition to solve
overdetermined least squares problems. Performance of QR
decomposition is typically the crucial factor limiting problem
sizes.

Graphics Processing Units (GPUs) are high-performance pro-
cessors capable of executing hundreds of floating point oper-
ations in parallel. As commodity accelerators for 3D graph-
ics, GPUs offer tremendous computational performance at
relatively low costs. While GPUs are favorable to applica-
tions with much inherent parallelism requiring coarse-grain
synchronization between processors, methods for efficiently
utilizing GPUs for algorithms computing QR decomposition
remain elusive.

In this paper1, we discuss the architectural characteristics
of GPUs and explain how a high-performance implementa-
tion of QR decomposition may be implemented. We provide
detailed performance analysis of the resulting implementa-
tion for real-valued matrices and offer recommendations for
achieving high performance to future developers of dense lin-
ear algebra procedures for GPUs. Our implementation sus-
tains 143 GFLOP/s, and we believe this is the fastest an-
nounced QR implementation executing entirely on the GPU.

1. INTRODUCTION
Graphics Processing Units are massively parallel processors
capable of completing hundreds of floating point operations
in parallel. Their large register files and high-performance
scratchpad memories are well-suited to streaming execution
models. Matrix factorization algorithms such as Cholesky,

1This work was supported in part by DARPA and AFRL
under contracts FA8750-06-1-0012 and FA8650-07-C-7724.
The opinions expressed are those of the authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPGPU ’09, March 8, 2009, Washington, D.C., USA.
Copyright 2009 ACM 978-1-60558-517-8/09/03 ... $5.00

LU, and QR decomposition, however, typically require fine-
grain synchronization between processors and contain short
serial routines as well as massively parallel operations. Achiev-
ing good utilization on a GPU requires a careful implementa-
tion informed by detailed understanding of the performance
characteristics of the underlying architecture.

In this paper, we focus on QR decomposition in particular
and discuss the suitability of several algorithms for imple-
mentation on GPUs. Then, we provide a detailed discussion
and analysis of how blocked Householder reflections may be
used to implement QR on CUDA-compatible GPUs sup-
ported by performance measurements. Our real-valued QR
implementation achieves more than 10x speedup over the
native QR algorithm in MATLAB and over 4x speedup be-
yond the Intel Math Kernel Library executing on a multi-
core CPU, all in single-precision floating-point. We present
throughput for real-valued implementations of this QR im-
plementation executing on several GPU architectures and
believe this is the fastest strictly GPU implementation yet
presented. Our implementation performs all processing on
the selected GPU, enabling threads on the host processor
to perform other computations and to devote PCI-Express
bandwidth to other tasks.

2. BACKGROUND
Commodity GPUs are inexpensive resources for delivering
very high computing throughput for certain classes of ap-
plications. GPUs are sold primarily as an integrated com-
ponent in display adapters for desktop personal computers.
High-throughput GPUs are primarily aimed for the video
game market. The primary application of GPUs has a very
large degree of potential parallelism at the most computa-
tionally intensive step: applying final shading effects to each
pixel in a polygon as it is rendered into the display buffer.
This fact has allowed GPU vendors to exploit microarchi-
tecture parallelism for increased performance without con-
straint by the application and without requiring much archi-
tectural infrastructure to facilitate parallel execution. The
volume of the GPU market provides tremendous competi-
tive pressure to improve performance and keep prices low
over successive product generations.

Simultaneously, GPU execution models have grown in flex-
ibility in response to the needs of graphics programmers
thereby enabling a wide range of computing tasks. GPU
vendors have consequently developed graphics-agnostic pro-
gramming models such as NVIDIA’s Compute Unified De-

vice Architecture (CUDA) [1] and Open Compute Layer
(OpenCL) [2] to facilitate general purpose computing on
GPUs. Nevertheless, fully exploiting the peak performance
capacity of GPUs has remained a challenge. Algorithms
with very high arithmetic intensity, very little need to syn-
chronize between execution paths, and very few scatter oper-
ations typically perform well on GPUs without the need for
careful optimization, but many computing tasks do not fit
these idealized constraints. Several algorithms for fast QR
decomposition exhibit a high degree of parallelism, but have
low arithmetic intensity and are highly coupled between ex-
ecution paths, requiring synchronization between elements
after small numbers of arithmetic operations. As a result,
attempts to exploit GPUs to accelerate QR decomposition
have been moderately successful achieving 4x speedup [3]
over a reference implementation distributed with Lincoln’
Laboratory’s HPEC Challenge [4]. In this paper, we base
speedup numbers on the highly optimized Intel Math Ker-
nel Library which is among the fastest QR implementations
available for multicore CPUs.

3. QR ALGORITHMS
QR decomposition factors an m-by-n matrix A into the
product A = QR, where Q is an m-by-m unitary matrix
and R is an m-by-n upper triangular matrix. Several one-
sided factorization methods compute the QR decomposition.
Two of these, Givens and Householder [5], apply a set of or-
thogonal transformations to the input matrix to bring it into
upper triangular form. By concatenating these orthogonal
transforms, the matrix Q is formed, all while preserving the
invariants A = QR and QHQ = I. Modified Gram-Schmidt
computes the QR factorization via projection operations.
Each of these methods has favorable numerical properties
and offers some parallelism. The suitability of each algo-
rithm for GPU implementation depends on memory access
patterns, the frequency of inter-processor synchronization,
and the scalability of parallelism within the algorithm.

3.1 Modified Gram-Schmidt
The modified Gram-Schmidt QR (MGS) method computes
A = Q1R1 where A is m-by-n, Q1 is m-by-n with orthonor-
mal columns, and R1 is n-by-n. This factorization differs
from what we have defined in that Q is not square. MGS of-
fers fairly good numerical properties, but it consists of oper-
ations that are not favorable to high performance on GPUs:
computing each element of the output matrix R requires
large vector inner products and many synchronizations [5].
Implementing MGS on a GPU would incur prohibitive over-
head. A blocked method exists in which the matrix to be
factored is first partitioned into a number of sufficiently
small submatrices which are independently factored. How-
ever, this approach is susceptible to precision problems in
which columns of Q are not sufficiently orthonormal [6]. We
did not consider a fast implementation of blocked MGS QR
decomposition for this paper.

3.2 Givens QR
In the Givens method of QR, a sequence of rotations ap-
plied to the input matrix A place zeros in the trapezoidal
submatrix below the main diagonal. Each rotation G(θ) is
a Givens rotation, a unitary matrix chosen such that

G(θ)

[
f
g

]
=

[
c s
−s∗ c

] [
f
g

]
=

[
r
0

]

The algorithm begins by choosing elements from the bottom
two rows in A in the left-most column. These determine the
the Givens rotation Gm,1(θ) which may then be used to
multiply in-place the submatrix of A formed by the bottom
two rows. Then, Gm,1(θ)

H may be used to multiply a pair of
columns Q(:, m−1 : m) in place. The multiplication in A has
the desired effect of overwriting the bottom left element with
0 while preserving the invariants in the algorithm. Next, the
algorithm proceeds up one row in A and repeats, computing
Gm−1,1(θ) and applying it to A(m − 2 : m − 1, :) and Q(:
, m−2 : m−1). This proceeds throughout the entire column
stopping at the main diagonal at which point all of the left
column in A except the first element is overwritten with
zeros. The algorithm moves right one column and repeats
from the bottom row, again stopping at the main diagonal.
When all columns have been visited, A is in upper triangular
form, and the QR decomposition is complete.

G(θ) may be computed from f and g without explicitly com-
puting θ or evaluating any trigonometic functions [7]. More-
over, Sameh and Kuck [8] demonstrate a pattern in which
Givens rotations may be computed in parallel. This method
is adaptable to streaming architectures and systolic arrays
such as MIT RAW [9]. In general, this approach achieves
good performance on MIMD architectures that support low-
latency communication and synchronization. GPUs, on the
other hand, do not offer on-chip mechanisms for synchroniz-
ing the several SIMD processors and require either invoking
a sequence of kernels with implicit synchronization barriers
between each invocation or assuming a consistency model
for global memory and implementing barriers in the shared
global address space. Performance results for Givens QR
implemented on CUDA-compatible GPUs have been pre-
sented for the HPEC Challenge benchmarks [3]. However,
attempts to develop a high performance implementation of
this algorithm in CUDA were met with limited success and
do not scale well to arbitrarily large matrix sizes.

3.3 Householder QR
Householder QR computes the upper triangular matrix R
from an m-by-n matrix A by applying a sequence of House-
holder reflections to A in place [5]. A Householder reflection
is an orthogonal transform of the form

P = I − 2

vHv
vvH

where v is a Householder vector. v may be chosen from
a vector x such that Px = ejθ||x||e1, where P is unitary
and e1 is a column vector with 1 in the first element and
0 in all other elements. Part of column k of a matrix A
denoted xk is chosen such that the first element xk(1) is on
the diagonal and the rest of xk occupies the lower part of
A. A Householder reflection Pk computed from xk may be
applied to A in place overwriting column xk with Pkxk and
updating other columns also. We see that Pkxk is nonzero

only in the first element, and all elements below the main
diagonal of PkA are now 0.

Figure 1: Triangularizing A with Householder re-
flections.

Figure 1 illustrates how a sequence of Householder trans-
forms may be chosen from columns of A to bring it into
triangular form. In the figure, the dashed rectangle high-
lights the vector xk from which a Householder vector vk

is computed. vk is used to construct the unitary matrix
P = Im−k+1 − βvkvH

k . By overwriting A with PkA, zeros
in column k are placed below the main diagonal. Moving to
the right one column and down one row, the process repeats
until A is triangularized. Because Pk is unitary, this se-
quence may be applied while maintaining the invariant that
A = (P H

1 P H
2 · · ·P H

n−1)(Pn−1 · · ·P2P1A). We see this is the
QR decomposition with

Q = (P H
1 P H

2 · · ·P H
n−1)

R = (Pn−1 · · ·P2P1A)

Applying a Householder reflection does not require a general
matrix-matrix product, for

PA = (I − βvvH)A

= A− vwH

where w = βAHv. This gives rise to the following QR algo-
rithm.

Algorithm 1 Compute the QR factorization of A via
Householder reflections [5].

Require: QHQ = I
1: Q ← I
2: for k = 1 to n do
3: [v, β] = house(A(k : m, k))
4: A(k : m, k : n) = A(k : m, k : n)−βvvHA(k : m, k : n)
5: Q(1 : m, k : m) = Q(1 : m, k : m) − βQ(1 : m, k :

m)vvH

6: end for

The function house(x) returns the Householder vector v =
x− ejθ||x||e1, where x(1) = rejθ, and β = 2

vHv
.

3.4 Blocked Householder QR
The above algorithm is conceptually simple and dominated
by matrix-vector multiplies. However, the amount of com-
putation per memory element fetched from global memory
is quite low. To improve performance, an algorithm in which
several Householder transforms may be applied in a single
operation was sought. Bischof and Van Loan [6] explain how

the Householder QR algorithm may be generalized to rep-
resent multiple Householder transforms as a single transfor-
mation matrix. Rather than apply Householder reflections
as rank-1 updates to the identity matrix,

P = P1P2 · · ·Pr

= (I − β1v1v
H
1)(I − β2v2v

H
2) · · · (I − βrvrv

H
r)

the m-by-r matrices W and Y are computed such that

Pwy = P1P2 · · ·Pr

= I + WY H

The above operation is rich in matrix-matrix products and
can be expected to achieve high performance on GPUs given
sufficiently large problem sizes. Moreover, PwyA may be
computed as PwyA = A+W (Y HA) requiring 5mnr FLOPs
if the operations are performed in the order indicated by
the parentheses. This is fewer FLOPs than multiplying the
m-by-n matrix A by the m-by-m matrix Pwy. Block size
may be chosen based on the shared memory capacity of the
target architecture and the warp size that leads to maximum
performance for matrix multiply. The formation of W may
be performed from a block of Householder vectors stored
in the lower trapezoidal part of V and from the vector B
containing corresponding βh. The algorithm to form W and
Y from r Householder vectors is as follows.

Algorithm 2 Computation of W and Y from V and B [5]

1: Y = V (1 : end, 1)
2: W = −B(1) · V (1 : end, 1)
3: for j = 2 to r do
4: v = V (:, j)
5: z = −B(j) · v −B(j) ·WY H v
6: W = [W z]
7: Y = [Y v]
8: end for

Algorithm 1 may be modified by partitioning the columns
of the input matrix A into blocks of r columns. For block
k, r Householder reflections are computed and applied to
triangularize the columns of that block as in the original
algorithm. Rather than apply a single Householder trans-
form to the columns of the remaining blocks as before, we
instead compute Wk and Yk as in Algorithm 2 and then ap-
ply Pwy = I + WkY H

k to the remaining blocks of A and to
all of Q. The matrix-vector products are performed on ma-
trices of size (m−kr)× r, and the updates to the remaining
blocks and to Q are accomplished by matrix-matrix prod-
ucts. r should be chosen to minimize total runtime on the
target architecture. For r = n, the blocked Householder
algorithm degenerates into Algorithm 1. The entire proce-
dure is specified in Algorithm 3. Workloads in units of real
floating point operations are expressed for each phase of the
above algorithm in Table 1 for problem sizes of interest.

Table 1: Workload for real blocked Householder QR in GFLOPs.
Dimension house(A(:, u)) A = P ·A WY A = P H

wy ·A Q = Q · Pwy Total
512× 256 0.000196 0.00463 0.00656 0.0518 0.211 0.275
1024× 512 0.000786 0.0184 0.0257 0.433 1.66 2.14
1536× 768 0.00177 0.0413 0.0571 1.48 5.55 7.14
2048× 1024 0.00314 0.0734 0.102 3.54 13.1 16.8
2560× 1280 0.00491 0.115 0.158 6.94 25.6 32.8
3072× 1536 0.00708 0.165 0.228 12.0 44.1 56.5
3584× 1792 0.00963 0.224 0.310 19.1 70.0 89.7
4096× 2048 0.0126 0.293 0.404 28.6 104 134
4608× 2304 0.0159 0.371 0.511 40.7 149 190
5120× 2560 0.0197 0.458 0.631 55.9 204 261
6656× 3328 0.0332 0.773 1.65 123 447 572
8192× 4096 0.0503 1.17 25.0 230 833 1090

Algorithm 3 Block Householder QR

Require: A ∈ Cm×n, QHQ = I
1: Q ← I
2: for k = 1 to n/r do
3: s = (k − 1) · r + 1
4: for j = 1 to r do
5: u = s + j − 1
6: [v, β] = house(A(u : m, u))
7: A(u : m, u : s + r − 1) = A(u : m, u : s + r − 1)−

βvvHA(u : m, u : s + r − 1)
8: V (:, j) = [zeros(j − 1, 1); v]
9: B(j) = β

10: end for
11: Y = V (1 : end, 1)
12: W = −B(1) · V (1 : end, 1)
13: for j = 2 to r do
14: v = V (:, j)
15: z = −B(j) · v −B(j) ·WY Hv
16: W = [W z]
17: Y = [Y v]
18: end for
19: A(s : m, s + r : n) = A(s : m, s + r : n) + Y W HA(s :

m, s + r : n)
20: Q(1 : m, s : m) = Q(1 : m, s : m) + Q(1 : m, s :

m)WY H

21: end for

4. IMPLEMENTATION
Algorithm 3 was first implemented in C++ with the CUBLAS
library distributed with CUDA 2.0 to obtain baseline perfor-
mance results. Each function call into CUBLAS was instru-
mented with performance counters to measure the fraction
of total runtime spent in each operation. The impact of
timing instrumentation on total runtime is small compared
to total runtime. The instrumented algorithm was executed
five times, and the timing profile across all runs was aver-
aged. Functions dominating runtime were then selected for
custom implementations as one or more CUDA kernels.

The CUDA execution model [1] specifies a collection of mul-
tiprocessors that share a global address space. Each multi-
processor is composed of 8 datapaths that execute a “warp”
of 32 threads in SIMD fashion. When the threads of a warp
stall due to reaching a synchronization barrier or memory

operation, another warp on the same processor is scheduled
for execution. Kernels are designed with several concurrent
warps executing on each multiprocessor such that the GPU
performs computation while memory transfers complete.

In this implementation, where possible, operations requir-
ing several CUBLAS function calls were combined into sin-
gle kernels. For example, the norm computation dominates
the runtime of the house() function. Because each block
of A is transformed exclusively by reflections, the norms of
the columns of each block are invariant and may be com-
puted in parallel by a single kernel invocation before the
block is triangularized. This avoids the overhead of calling
shorter kernels many times and utilizes all multiprocessors,
with each multiprocessor performing a reduction operation
corresponding to a particular column.

The datapaths of a multiprocessor access a large register file
partitioned among the many threads and a 16 kB scratchpad
known as “shared memory.” Shared memory is addressable
by load and store instructions and is striped across 16 ports.
Each port is 32 bits wide, and if every thread of a“half-warp”
accesses a different port, the load or store instruction will not
stall. Selecting access patterns to shared memory that avoid
port conflicts reduces stall rates and maximizes throughput.
Typically, this requires skewed access to two-dimensional ar-
rays in shared memory among threads of the same warp.
Storing blocks of frequently used data in registers reduces
pressure on shared memory and avoids additional instruc-
tions to required load values into registers before they may
be used as operands.

Algorithm 3 was expected to be bottlenecked by matrix-
vector products within the main loop of the algorithm. The
CUBLAS prototype makes several calls to the CUBLAS
function cublasSgemv() to compute the product βA′v and
the product βAv. To improve performance, these were im-
plemented with custom CUDA kernels according to the ar-
chitecture characteristics discussed in this section. Shared
memory is used only to store part of the vector v. Columns
of the matrix A are streamed into the register file with coa-
lesced read operations where they are used to multiply cor-
responding elements of the V vector. The CUDA compiler is
capable of automatically unrolling loops with constant cycle
counts [[1] §4.2.5.2]. All threads attempt read access to the

same address in shared memory, so no bank conflict occurs
when loading V_shared[j]. To avoid potentially expensive
thread divergence, guard conditionals are excluded and ma-
trix dimensions are assumed to be multiples of 64. The
following kernel exhibits an average 2.5x speedup over the
CUBLAS 2.0 [10] function cublasSgemv(’n’,..) for prob-
lem sizes of interest. As described in [11], a relatively small
block size of 64×1 threads was selected to reduce overheads
associated with loop index and address calculations. This
departs from the CUDA Programming Guide which recom-
mends a large number of threads to maximize occupancy [[1]
§5.2].

Listing 1: Matrix-vector product
/*

Computes W = beta A V + alpha W
*/
__global__ void gtSgemv(

float alpha , float beta , float *A,
float *V, int M, int N, float *W) {

int row = blockIdx.x * 64 + threadIdx.x;
__shared__ float V_shared [64];
float w = alpha * W[row];

A += row;
V += threadIdx.x;

for (int k = 0; k < N; k += 64) {
V_shared[threadIdx.x] = *V;
V += 64;
__syncthreads ();
for (int j = 0; j < 64; j++) {

w += *A * V_shared[j];
A += M;

}
__syncthreads ();

}
W[row] = beta * w;

}

Performance of an m-by-m matrix multiplying an m ele-
ment vector is illustrated in Figure 2. The target GPUs for
this benchmark are the GeForce GTX 280 and GeForce 9800
GX2. Additionally, a theoretical upper bound for floating-
point performance in GFLOP/s suggested by global mem-
ory bandwidth is plotted for each architecture. For the
GeForce GTX280, theoretical bandwidth is 141 GB/s; for
the GeForce 9800GX2, theoretical peak bandwidth is 64
GB/s. The number of FLOPs for the Sgemv operation is
computed as 2mn + 2m, and total data transferred assum-
ing no redundancy is 4mn + 4n bytes. This performance
bound ignores kernel launch overheads which are deemed to
be negligible for large problems. As illustrated, the custom
gtSgemv kernel achieves a maximum of 69 GFLOP/s or 97%
of theoretical performance when executed on the GeForce
GTX280 for large matrices. Examining the CUBLAS source,
we see that the access patterns of cublasSegmv(’n’, ..)

are similar to the kernel in Listing 1, but the kernel body in-
cludes a significant number of integer operations and shared
memory loads and stores, all of which reduce floating point
intensity.

Similarly, a kernel computing a matrix-vector product was
written to compute βAHv. Together, these functions de-
mand the majority of runtime during the triangularization

1000 2000 3000 4000 5000 6000 7000 8000

10

20

30

40

50

60

70
Matrix−vector product

Matrix order (m)

G
F

LO
P

/s

gtSgemv GTX280
cublasSgemv GTX280
Theoretical GTX280
gtSgemv 9800
cublasSgemv 9800
Theoretical 9800GX2

Figure 2: Performance of matrix-vector product for
matrices of dimension m

phase and the formation of the WY representation of a set of
Householder reflections. All custom kernels access submatri-
ces and vectors beginning on rows that are multiples of 16 to
ensure memory transfers are aligned to 64 byte boundaries
and complete in as few tranfer operations as possible. The
additional elements are overwritten with zeros once they are
loaded into registers. CUBLAS matrix-matrix product func-
tions are called to compute the updates for A and Q, lines
19 and 20 in Algorithm 3. Matrix product operations in
CUBLAS have been measured to obtain over 400 GFLOP/s
sustained and approach peak multiply-add performance for
the architectures under test [11].

5. PERFORMANCE RESULTS
The performance of this implementation of QR decompo-
sition was measured by computing the QR factorization of
real-valued rectangular matrices with twice as many rows
as columns corresponding to typical overdetermined least
squares problems. The input matrix A was initialized with
random values from −1 to 1 below the main diagonal, 0 writ-
ten above the main diagonal, and 1s along the diagonal to
ensure full rank. Then, randomly selected Givens rotations
were applied to A to conceal all apparent structure while
preserving rank. Although some applications of QR do not
require Q to be explicitly formed, performance results pre-
sented here include the computation of the full m-by-m Q
matrix. Error criteria were selected as follows.

||QR−A|| ≤ m · 2−23||A||
||QHQ− I|| ≤ m · 2−23

||L|| ≤ m · 2−23

where L is the trapezoidal submatrix below the main di-
agonal of R. All tests for which performance results are
reported satisfy these error criteria. The testbed applica-
tion was compiled and linked with the CUDA 2.0 toolchain
and executed on a Q6600 quad-core Intel Core2 at 2.4 GHz
running Windows XP. Additionally, a reference application
was implemented with the Intel Math Kernel Library 10.0

and executed on a 64-bit Linux machine with a quad-core
Intel Xeon CPU at 2.8 GHz. For both applications, the
matrix data type was in single-precision, and all matrices
were in column major order. For the GPU test application,
all data was resident in device memory before timing mea-
surements were made and no PCI-Express bus traffic was
considered. This scenario is typical of a real-world GPU
application using CUBLAS or GPU VSIPL [12] in which in-
termediate results are stored on the device, and only final
outputs are copied back to host memory.

The QR procedure was instrumented with CPU-based per-
formance counters to record the number of cycles required by
each phase of the algorithm. cudaThreadSynchronize() was
called after each kernel invocation to ensure the kernel had
completed before stopping the cycle counter. No numerical
processing was performed on the CPU for the GPU algo-
rithm, and runtime is almost entirely a function of the tar-
get GPU’s performance. This implementation was tested on
two GPU architectures supporting CUDA: NVIDIA GeForce
9800 GX2 and GeForce GTX 280. For each target, the
CUDA compiler nvcc was invoked with a flag for the maxi-
mum possible shader model version supported by the target
GPU. The flag -maxrregcount was issued to nvcc to clamp
the register usage to 32 registers per thread to avoid spilling
to local memory on the 9800 GX2. The register file for the
GTX280 is twice as large, accommodating larger warp sizes
without register spilling.

Overall runtime for various matrix sizes is presented in Fig-
ure 3, and performance with respect to workload is illus-
trated in Figure 4. The maximum problem size for the
GeForce 9800 GX2 was limited by its 512 MB of global
memory per GPU. Figure 5 illustrates the speedup of the
GeForce GTX 280 with our QR algorithm over the Intel
MKL library’s support for QR decomposition implemented
by the LAPACK functions sgeqrf() and sormqr(); MKL
was run with 1, 2, and 4 threads.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

Matrix rows

R
un

tim
e

(s
)

9800 GX2
GTX 280

Figure 3: Runtimes of QR decomposition on GPUs.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

Matrix rows

G
F

LO
P

/s

GTX 280
9800 GX2

Figure 4: Sustained performance of QR decomposi-
tion on GPUs.

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

S
pe

ed
up

Matrix rows

MKL − 1 thread
MKL − 2 threads
MKL − 4 threads

Figure 5: Speedup of GTX280 QR implementation
over MKL.

The GeForce GTX280 achieves 143 GFLOP/s sustained per-
formance with our QR implementation. This constitutes
the highest performance of a single processor for real QR
decomposition we are aware of. As predicted, triangulariz-
ing a block of A and forming the WY representation of the
Householder reflections requires much more runtime than
applying the blocked Householder reflections to the rest of
A. Applying the reflections to Q requires a significant frac-
tion of runtime, as Q is full with m rows and m columns.
Moreover, while the submatrix of A to which Pwy is ap-
plied grows smaller as the algorithm progresses, the num-
ber of rows in Q to which Pwy is applied remains constant.
As Figure 6 illustrates, the large workload in transforming
Q achieves the highest performance, as it consists of large
matrix-matrix products. Table 2 expresses the distribution
of runtime across the several phases of our QR implemen-
tation for the largest possible problem sizes on both the
GeForce 9800 GX2 and the GeForce GTX 280. The fraction
of total runtime for each phase did not change appreciably
with problem size except for very small matrices.

Table 2: Runtime in seconds for phases of blocked Householder QR on GPUs.
Operation GeForce 9800 GX2 GeForce GTX 280 GeForce GTX 280
Problem size 6656× 3328 6656× 3328 8192× 4096
Householder 0.360 0.326 0.565
A = P ·A 1.25 0.952 1.45
WY Computation 1.10 1.25 1.86
A ← (I + WY H)HA 1.10 0.534 0.971
Q ← Q(I + WY H) 3.21 1.36 2.79
Total (seconds) 7.02 4.43 7.629
GFLOP/s 81.5 GFLOP/s 129 GFLOP/s 143 GFLOP/s

1000 2000 3000 4000 5000 6000 7000 8000

50

100

150

200

250

300

Matrix rows

G
F

LO
P

s/
s

QP − GTX280

PHA − GTX280
QP − 9800GX2

PHA − 9800GX2

Figure 6: Performance of A ← P HA and Q ← QP for
GeForce GTX280 and GeForce 9800.

6. RELATED WORK
Volkov and Demmel [11] present strong performance results
for a general matrix product in the context of a QR al-
gorithm. We confirm several of their performance mea-
surements such as kernel invocation and synchronization
costs and maximum achievable floating-point performance.
In [11], however, computation of W and Y appears to be
performed on the host CPU and transferred to the GPU
to transform the remaining parts of A and Q. Moreover,
their timing measurements do not appear to include trans-
fer times. Our implementation of QR decomposition is per-
formed entirely on the GPU with the host processor re-
maining idle or free to complete other tasks. Our sustained
floating-point performance reflects actual achievable through-
put of a GPU-based QR algorithm. PCI-Express bandwidth
may be dedicated to other purposes and threads on the CPU
can perform other computations while the QR decomposi-
tion is completed. Nevertheless, we remain interested in
Volkov and Demmel’s work in this area and envision a many-
core CPU-GPU solution as they have proposed to algorithms
such as singular value decomposition with both serial and
highly parallel parts.

Several attempts to complete the HPEC Challenge [4] on
GPUs have included QR performance results. The HPEC
Challenge, however, specifies the Fast Givens QR algorithm
be implemented. While this was a reasonable decision befit-
ting the novel architectures for which the HPEC Challenge

was intended, Fast Givens does not match GPU architec-
tures well. The implementation covered in this paper is un-
constrained by algorithm selection and consequently offers
higher performance over a large range of matrix sizes.

Baboulin [13] achieved 50 GFLOP/s for a CUBLAS imple-
mentation of QR decomposition on an NVIDIA Quadro FX
5600 for very large matrices. The Quadro FX 5600 is com-
parable to the GeForce 9800 GX2 used here though it has
considerably more global memory and slightly higher mem-
ory bandwidth. For the the 8192× 4096 problem size, their
implementation achieved approximately 35 GFLOP/s. The
largest matrix they tested had 19,000 rows and achieved a
peak sustained performance of 50 GFLOP/s. While they
employed a block Householder algorithm as we did, their
use of CUBLAS rather than custom kernels misses opportu-
nities for performance.

7. CONCLUSION
We have demonstrated an implementation of QR decom-
position that runs entirely on the GPU. Restructuring algo-
rithms so they are composed of dense operations on blocks of
data takes advantage of high bandwidth to the register file,
permitting each multiprocessor to approach theoretical peak
performance. Structuring algorithms in terms of operations
on blocks of matrices leverages the streaming architecture
of CUDA-capable GPUs. Kernels were implemented with
detailed knowledge of the underlying GPU architecture and
offer performance beyond what is available in CUBLAS 2.0.

Our QR implementation achieves nearly 5x speedup for large
matrices over Intel’s MKL native QR algorithm. The al-
gorithm selection and implementation details covered here
apply to other architectures with deep memory hierarchies
and data parallel arithmetic units. In the future, we hope to
investigate load balancing between the CPU and the GPU,
permitting high-performance libraries such as MKL to take
advantage of the CPU’s strengths while tasking the GPU
with large block-oriented procedures. Nevertheless, we con-
sider 143 GFLOP/s of sustained performance entirely on the
GPU a notable achievement.

This implementation has been included in GPU VSIPL [12],
an implementation of the Vector Signal Image Processing
Library [14] for NVIDIA GPUs. VSIPL is a standardized
API for developing platform-independent applications ca-
pable of taking advantage of specialized accelerator archi-
tectures. Additionally, we intend to apply the techniques
and kernels developed for our QR decomposition to imple-

ment VSIPL’s support for other linear algebra decomposi-
tions such as SVD, LU, and Cholesky.

8. REFERENCES
[1] NVIDIA Corporation, Santa Clara, California,

NVIDIA CUDA Compute Unified Device Architecture,
2008.

[2] Khronos OpenCL Working Group, The OpenCL
Specification, 2008.

[3] A. Kerr, D. Campbell, and M. Richards, GPU
Performance Assessment with the HPEC Challenge, in
HPEC Workshop 2008, Lexington, MA, 2008, MIT
Lincoln Laboratory.

[4] R. Haney, T. Meuse, J. Kepner, and J. Lebak, HPEC
Challenge Overview, MIT Lincoln Laboratory, 2005.

[5] G. Golub and C. V. Loan, Matrix Computations,
Third ed. (Johns Hopkins University Press, Baltimore,
MD., 1996).

[6] C. H. Bischof and C. V. Loan, The WY
Representation for Products of Householder Matrices,
Cornell University, Ithaca, NY, USA, 1985.

[7] D. Bindel, J. Demmel, W. Kahan, and O. Marques,
On computing Givens rotations reliably and efficiently,
ACM Trans. Math. Softw., New York, NY, USA, 2002.

[8] A. H. Sameh and D. J. Kuck, On Stable Parallel
Linear System Solvers, Journal of the ACM, 1978.

[9] H. Hoffmann, Stream Algorithms and Architecture,
Master’s thesis, Massachusetts Institute of Technology,
2003.

[10] NVIDIA, CUDA CUBLAS Library, NVIDIA
Corporation, Santa Clara, California, 2008.

[11] V. Volkov and J. W. Demmel, Benchmarking GPUs to
Tune Dense Linear Algebra, in SC ’08: Proceedings of
the 2008 ACM/IEEE Conference on Supercomputing,
pp. 1–11, Piscataway, NJ, USA, 2008, IEEE Press.

[12] A. Kerr, D. Campbell, and M. Richards, GPU VSIPL,
in HPEC Workshop 2008, Lexington, MA, 2008, MIT
Lincoln Laboratory.

[13] M. Baboulin, J. Dongarra, and S. Tomov, Some Issues
in Dense Linear Algebra for Multicore and Special
Purpose Architectures, Technical Report
UT-CS-08-200, University of Tennessee, 2008.

[14] D. A. Schwartz, R. R. Judd, W. J. Harrod, and D. P.
Manley, VSIPL 1.3 API, VSIPL Forum, 2008.

